Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tlut2509
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 13:46

AH=căn 12^2-9^2=3*căn 7(cm)

CH=AH^2/HB=9*7/9=7(cm)

BC=9+7=16cm

AC=căn CH*BC=4*căn 7(cm)

@DanHee
23 tháng 7 2023 lúc 13:53

Xét tam giác \(ABH\) vuông tại H có

\(AH^2+HB^2=AB^2\left(Pytago\right)\)

\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Xét tam giác ABC vuông tại A

\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)

HT.Phong (9A5)
23 tháng 7 2023 lúc 13:59

Ta có tam giác ABC vuông tại A và đường cao AH nên:

Áp dụng tính chất cạnh góc vuông và hình chiếu:

\(AB^2=BC\cdot HB\Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\)

Ta có tam giác HAB vuông tại H áp dụng tính định lý Py-ta-go:

\(AH=\sqrt{AB^2-HB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Mà: \(HB+HC=BC\Rightarrow HC=BC-HB=25-9=16\left(cm\right)\)

Lại áp dụng tính chất hình chiếu và cạnh góc vuông ta có:

\(AC=\sqrt{25\cdot16}=20\left(cm\right)\)

Vũ Văn Thắng
Xem chi tiết
Huỳnh Quang Sang
4 tháng 3 2021 lúc 10:25

Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)

=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)

=> \(DF=\sqrt{144}=12\left(cm\right)\)

Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh

Xét tam giác ABC và tam giác DEF ta có :

\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)

\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)

\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)

=> Tam giác ABC đồng dạng tam giác DEF

Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được

Khách vãng lai đã xóa
co
4 tháng 3 2021 lúc 10:25

ko b oi

Khách vãng lai đã xóa
MAI VŨ BẢO CHÂU
4 tháng 3 2021 lúc 15:22

hai tam giác ko thể đồng dạng bạn nhé

Khách vãng lai đã xóa
Bin Tổng
Xem chi tiết
Trúc Giang
18 tháng 3 2021 lúc 10:32

Tam giác ABC vuông tại A. Áp dụng Pitago

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow9^2+12^2=BC^2\)

\(\Rightarrow BC=15\)

Xét tam giác ABC và tam giác AHC ta có:

Góc C: chung

Góc BAC = Góc AHC (=900)

=> Tam giác ABC ~ Tam giác HAC (g - g)

\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\Rightarrow\dfrac{12}{HC}=\dfrac{15}{12}=\dfrac{5}{4}\)

\(\Rightarrow HC=12:\dfrac{5}{4}=12.\dfrac{4}{5}=9,6\left(cm\right)\)

sang trần
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2022 lúc 21:24

Áp dụng hệ thức lượng:

\(AK^2=BK.CK=9.4=36\)

\(\Rightarrow AK=6\left(cm\right)\)

Áp dụng định lý Pitago:

\(AB^2=AK^2+BK^2\Rightarrow AB=\sqrt{AK^2+BK^2}=3\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{AK^2+CK^2}=2\sqrt{13}\left(cm\right)\)

Nguyễn Thảo Hân
Xem chi tiết
Gia Cát Lượng
24 tháng 12 2016 lúc 10:58

ngu quá

Minh tú Trần
Xem chi tiết
Kami no Kage
Xem chi tiết
Nguyễn Bảo Trâm
22 tháng 9 2015 lúc 12:57

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

Lê Trà Nam
Xem chi tiết
nguyễn hòa
22 tháng 11 2016 lúc 16:40

cho tam giác abc, h là trực tâm, I là GĐ của các đường trung trực (tâm đường tròn ngoại tiếp). Gọi E là điểm đối xứng với A qua I.

CMR : BHCE là hình bình hành

moonu7a
24 tháng 11 2016 lúc 12:45

TU GIAI ĐÊ

H.Son
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 18:29

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=3,24\left(cm\right)\\HC=\dfrac{AC^2}{BC}=10,24\left(cm\right)\\AH=\sqrt{3,24\cdot10,24}=5,76\left(cm\right)\end{matrix}\right.\)