tìm số nguyên x biết : x + 2x = -36
x =
tìm x biết a) ( x + 3 )2 - ( 2x + 1 ).( x+3 ) = 0 ; b) x3 - 12x2 + 36x = 0
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
a, (x+3)2 - ( 2x + 1 ).( x+3)=0 b, x3-12x2+36x =0
=> (x+3).(x+3-2x-1) => x(x2-12x+36) = 0
=>(x+3).(-x+2) => x(x-6)2 = 0
=> x+3=0 <=> x=-3 => x=0 <=> x=0
-x+2=0 <=> x=-2 x-6= 0 <=> x=6
tìm x , biết
a, x ( x -1 ) - x2 + 2x = 5
b, 4x3 - 36x = 0
c, 2x2 - 2x = ( x - 1 )2
d, ( x - 7 ) ( x2- 9x + 20 ) ( x - 2 ) = 72
giúp emmm
a) \(\Leftrightarrow x^2-x-x^2+2x=5\)
\(\Leftrightarrow x=5\)
b) \(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0
\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy x = 0 , x = 3 hoặc x = -3
\(a,\Leftrightarrow x^2-x-x^2+2x=5\\ \Leftrightarrow x=5\\ b,\Leftrightarrow4x\left(x^2-9\right)=0\\ \Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-3^2-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-81=0\\ \Leftrightarrow\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)=0\\ \Leftrightarrow\left(x-8\right)\left(x-1\right)\left(x^2-9x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=1\\\left(x-\dfrac{9}{2}\right)^2+\dfrac{23}{4}=0\left(vô.n_0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
1. Tam giác ABC vuông tại A có BC = 30cm và AB:AC = 3:4. Khi đó AB=?
2. GTNN của A=|−x+7/3|+|−x−11/3|−17
3. Với x nguyên, tìm GTNN của B=4x+3/−2x+1
4. Tìm số tự nhiên a biết 12;20;a là độ dài các cạnh của 1 tam giác vuông.
5. Tìm các số tự nhiên x;y biết 2x+1.3y=36x
6. Trong mặt phẳng tọa độ Oxy, vẽ điểm A(-3;4). Khoảng cách từ A đến gốc tọa độ bằng bao nhiêu?
7. Tìm các số nguyên tố x;y sao cho x2−2y2=1
Câu 2:
Vậy GTNN của A=-11
Câu 3:
GTNN của khi -2x+1 nhỏ nhất. Vậy -2x+1=1(vì mẫu số khác 0 mà) nên x=0
vậy GTNN của B là 3
Câu 4
Trong tam giác vuông có cạnh huyền lớn nhất nên:
Vậy a=16
Câu 5:
Ta thấy nên
Nhìn vào biểu thức thấy ngay x=1;y=2
Câu 6: Khoảng cách từ A đến O chính là đường chéo của tam giác vuông OAB(với B trên Ox là -3 ý)
Kết quả là 5
Câu 7:
Xét suy ra x là số lẻ.
Đặt x=2k+1. Thay x=2k+1 vào có:
chia hết cho 2 mà y nguyên tố nên y=2. Thay y=2 vào suy ra x=3
1 : 18
2 : -11
3 : 0
4 : 16
5 : x=3;y=34
6 : 5
7 ; 3
Tìm x,biết
a)36x^2 - 49 = 0
b) (3x + 2) + ( x + 1)2 - (2x -5)((x+5) = - 12
a) 36x2 - 49=0
(6x)2 - 72 =0
(6x + 7)(6x - 7)=0
suy ra 6x + 7=0 hoặc 6x - 7=0
suy ra x =-7/6 hoặc x=7/6
tìm số tự nhiên x biết :
36x = 3672
36x = 3672
x = 3672 : 36
x = 102
k mk nha mk k lại
1. Tìm số nguyên x, y biết,
(x + 2)2 + (y -4)2 + (2y -4)4 = 0
2. Tìm số nguyên x, biết
x2 - 2x = 3
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Tìm x
a) (2x-5)2-(5+2x)=0
b) 27x3-54x2+36x=0
c)(x3+8)-(x+2)(x-4)=0
d)x6-1=0
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)
c)(x^3+ 8) - (x + 2)(x - 4) = 0
<=> x^3 -x^2 + 2x +8 + 8 = 0
<=> x^3 -x^2 + 2x + 16 = 0
<=> (x+2)(x^2-3x+8) = 0
=> x = -2
Bài 1.Tìm số nguyên n sao cho n+6 chia hết cho n+2
Bài 2. Tìm số nguyên n sao cho 3n+2 chia hết cho n+1
Bài 3. Tìm số nguyên x biết (x-2).(x+3)<0
Bài 4. Tìm số nguyên x biết (4-2x).(x+3)>0
Tìm x, biết:
a.(x-3).(x+3)=(x-5)^2
b.(2x+1)^2-4x.(x-1)=17
c.(3x-2).(3x+2)-9.(x-1).x=0
d.(3-x)^3-(x+3)^3=36x^2-54x
e.x^3-6x^2+12x-8=27
Một. Khai triển vế trái của phương trình:
(x-3)(x+3) = x(x+3) - 3(x+3) = x^2 + 3x - 3x - 9 = x^2 - 9
Khai triển vế phải của phương trình:
(x-5)^2 = (x-5)(x-5) = x(x-5) - 5(x-5) = x^2 - 5x - 5x + 25 = x^2 - 10x + 25
Đặt hai cạnh bằng nhau:
x^2 - 9 = x^2 - 10x + 25
Trừ x^2 từ cả hai phía:
-9 = -10x + 25
Trừ 25 từ cả hai vế:
-34 = -10 lần
Chia cả hai vế cho -10:
x = 3,4
b. Khai triển vế trái của phương trình:
(2x+1)^2 - 4x(x-1) = (2x+1)(2x+1) - 4x^2 + 4x = 4x^2 + 2x + 2x + 1 - 4x^2 + 4x = 8x + 1
Đặt vế trái bằng 17:
8x + 1 = 17
Trừ 1 cho cả hai vế:
8x = 16
Chia cả hai vế cho 8:
x = 2
c. Khai triển vế trái của phương trình:
(3x-2)(3x+2) - 9(x-1)x = (9x^2 - 4) - 9x^2 + 9x - 9x = -4 + 9x
Đặt vế trái bằng 0:
-4 + 9x = 0
Thêm 4 vào cả hai bên:
9x = 4
Chia cả hai vế cho 9:
x = 4/9
d. Khai triển vế trái của phương trình:
(3-x)^3 - (x+3)^3 = (27 - 9x + x^2) - (x^3 + 9x^2 + 27) = 27 - 9x + x^2 - x^3 - 9x^2 - 27 = -x^3 - 8x^2 - 9x
Đặt vế trái bằng 36x^2 - 54x:
-x^3 - 8x^2 - 9x = 36x^2 - 54x
Cộng x^3 + 8x^2 + 9x vào cả hai vế:
0 = 37x^2 - 63x
Chia cả hai vế cho x:
0 = 37x - 63
Thêm 63 vào cả hai bên:
63 = 37 lần
Chia cả hai vế cho 37:
x = 63/37
a) tìm số nguyên x biết rằng x+3 là số nguyên âm nhỏ nhất có 2 chữ số
b) Tìm số nguyên x biết rằng 2x -1 là số nguyên âm nhỏ nhất
a, số nguyên âm nhỏ nhất có 2 chữ số là -99
=> x + 3 = -99
=> x = -102
b, không có số nguyên âm nhỏ nhất