Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen nam hung
Xem chi tiết
hồ kiều oanh
Xem chi tiết
Luong Ngoc Quynh Nhu
23 tháng 7 2015 lúc 10:44

bn tự vẽ hình nha

a)tg ABC cân tại A suy ra AB=AC VÀ ABC=ACB

TA CÓ ABC+ACB+BAC=180 SUY RA 2ABC=180-BAC(1)

TA CÓ TG ADE CÂN TẠI A SUY RA AD=AE VÀ ADE=AED

TA CÓ ADE+AED+BAC=180 SUY RA  2ADE=180-BAD(2)

TỪ 1 VÀ 2 SUY RA DE SONG SONG BC

B)CMĐ DI SONG SONG EK

MÀ DE SONG SONG IK

TỪ 2 ĐIỀU TRÊN SUY RA DI=EK(TÍNH CHẤT HÌNH THANG)

C)TỪ H VẼ HN VUÔNG GÓC VỚI BC

MÀ DI VUÔNG GÓC VỚI BC

TỪ 2 ĐIỀU TRÊN SUY RA DI SONG SONG HN SUY RA IDH=NHD

GỌI  G LÀ GIAO ĐIỂM CỦA DH VÀ IN

CMĐ TG DIB=NHC(CH GN)

CMĐ TG IDK=NHK(C G C)

SUY RA ĐPCM

TỚ  GỢI Ý CHO CẬU RÙI ,CẬU TỰ PHĂNG RA NHA

 

 

Đào Diễm Quyên
Xem chi tiết
Phạm Hồ Thanh Quang
23 tháng 6 2017 lúc 6:03

a) Xét tam giác ABC ta có AB = AC
=> Tam giác ABC cân tại A
=> \(\widehat{ABC}\)\(\widehat{ACB}\)
=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\)
=> \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)

Xét tam giác ACE và tam giác ABD, ta có:
   \(\widehat{A}\) chung
   AC = AB (gt)
   \(\widehat{ACE}=\widehat{ABD}\)
=> Tam giác ACE = tam giác ABD (g.c.g)
=> BD = CE

b) Ta có: \(\hept{\begin{cases}DH⊥BC\\EK⊥BC\end{cases}}\)
=> DH // EK
Xét tam giác DHB vuông tại H và
      tam giác EKC vuông tại K, ta có:
   BD = CE (cmt)
   \(\widehat{DBH}\)(hay \(\widehat{DBC}\)) = \(\widehat{ECK}\)(hay \(\widehat{ECB}\)) (cmt)
=> Tam giác DHB = tam giác EKC (ch.gn)
=> DH = EK

Còn câu c mình không biết

Phan Thị Hồng Thắm
23 tháng 6 2017 lúc 6:10

a)Tam giác ABC có AB=AC suy ra tam giác ABC cân tại A suy ra góc B = C

           Mà BD là tia phân giác của góc B ; CE là tia phân giác của góc C

suy ra góc ABD = CBD =BCE =ACE

  Xét tam giác ABD và ACE có :

           góc  ABD =góc  ACE (cmt )

            AB = AC (gt)

           Chung gócA

suy ra tam giác ABD = ACE (g.c.g )

suy ra BD = CE ( 2 cạnh tương ứng )

b) Ta có DH vuông góc với BC ; EK vuông góc với BC 

           suy ra DH song song với EK 

Xét tam giác CEK và BDH có :

        BD= CE ( cm ở ý a)

        góc CKE = góc BHD ( = 90 độ )

         góc CBD = BCE ( cm ở ý a )

suy ra tam giác CEK= BDH (ch-gn)

suy ra DH = EK ( 2 cạnh tương ứng )

c) Xét tam giác BIC có góc CBD =BCE ( cm ở ý a ) suy ra tam giác BIC cân tại I 

      suy ra BI = CI ( t/c tam giác cân )

Xét tam giác AIC và AIB có :

          AB =AC ( gt )

          góc ACE = ABD ( cm ở ý a )

          CI = BI ( cmt)

suy ra tam giác AIC = AIB ( c.g.c)

suy ra góc IAC = IAB (2 góc tương ứng )

suy ra AI là tia phân giác của góc BAC     (1)

Mà tam giác ABC cân tại A         ( 2) 

    Từ ( 1 ) và ( 2 ) suy ra AI vuông góc với BC 

                    ( nếu đúng nhớ kết bạn với tớ nhé ^-^)

Trương Minh Duy
Xem chi tiết
Trương Minh Duy
Xem chi tiết
Nguyễn Ngọc Anh Minh
18 tháng 11 2021 lúc 14:53

Từ A dựng đường thẳng vuông góc với BC căt BC tại M

Xét tg vuông ABM và tg vuông BDH có

\(BD\perp BA;HB\perp AM\Rightarrow\widehat{HBD}=\widehat{MAB}\) (góc có cạnh tương ứng vuông góc)

\(BD=BA\left(gt\right)\)

\(\Rightarrow\Delta BDH=\Delta ABM\) (hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau)

\(\Rightarrow DH=BM\)

Chứng minh tương tự ta cũng có \(EK=CM\)

\(\Rightarrow DH+EK=BM+CM=BC\left(đpcm\right)\)

Khách vãng lai đã xóa
Phùng Phúc An
Xem chi tiết

A C B D E H K I 2 1

a, Ta có : \(\Delta\)ABC cân tại A (gt)

\(\Rightarrow\)Góc B = góc \(C_1\)

Mà góc \(C_1=C_2\)(đối đỉnh)

\(\Rightarrow\)Góc B = góc \(C_2\)

Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :

BD=CE (gt)

Góc B = góc C\(_2\)(cmt)

\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)

\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)

Vậy...

b, Ta có : DH và EK cùng vuông góc vs BC (gt)

\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)

\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )

Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :

DH=CE (\(\Delta BEH=\Delta CEK\))

Góc HDI = góc IEC (cmt)

\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)

\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )

Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )

\(\Rightarrow\)I là trung điểm của BC

Vậy...

Chúc bn hok tốt

Khách vãng lai đã xóa
Hình Kim Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2023 lúc 19:14

a: DH vuông góc BC

EK vuông góc BC

=>DH//EK

b: góc BDH+góc B=90 độ

góc CEK+góc C=90 độ

góc B=góc C

=>góc BDH=góc CEK

Phùng Phúc An
Xem chi tiết
Phạm Thị Huyền
Xem chi tiết
Ang Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 11:51

1) Ta có: \(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}=\widehat{BCE}=\dfrac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{CBD}=\widehat{ACE}=\widehat{BCE}\)

Xét ΔABD và ΔACE có

\(\widehat{BAD}\) chung

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

Do đó: ΔABD=ΔACE(g-c-g)

Suy ra: BD=CE(hai cạnh tương ứng)

2) Ta có: EK⊥BC(gt)

DH⊥BC(gt)

Do đó: EK//DH(Định lí 1 từ vuông góc tới song song)

Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Ta có: AE+EB=AB(E nằm giữa A và B)

AD+DC=AC(D nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AE=AD(cmt)

nên EB=DC

Xét ΔEKB vuông tại K và ΔDHC vuông tại H có

EB=DC(cmt)

\(\widehat{EBK}=\widehat{DCH}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEKB=ΔDHC(cạnh huyền-góc nhọn)

Suy ra: EK=DH(hai cạnh tương ứng)