CMR: \(1+\dfrac{t}{\sqrt{t^2+1}}>0\) với mọi t
Cho biểu thức A= \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) ( với x ≥ 0, x ≠ 1)
a. Rút gọn A
b. CMR: A > 0 với mọi x ≠ 1
c. Tìm GTLN của A
\(a.A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\) ( x ≥ 0 ; x # 1 )
\(b.\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(c.\) \(\dfrac{2}{x+\sqrt{x}+1}\) ≤ \(\dfrac{2}{1}=2\left(x\text{≥ }0\right)\)
⇒ \(A_{Max}=2."="\) ⇔ \(x=0\left(TM\right)\)
A = \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{2}\right)\)
- Rút gọn
- CMR : A > 0 với mọi x để A có nghĩa
a)ĐK: \(x\ge0;x\ne1\)
\(A\Leftrightarrow\left(\dfrac{x+2+\sqrt{x}\left(\sqrt{x}+1\right)-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}-1}{2}\right)\)
\(\Leftrightarrow\left(\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{2}\)
\(\Leftrightarrow\dfrac{x-1}{2\left(x+\sqrt{x}+1\right)}\)
Sửa câu a:
A=\(\left(\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
ĐK:\(x\ge0\),\(x\ne1\)
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{2}\right)=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}-1}{2}\right)=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{\left(x-2\sqrt{x}+1\right).2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có \(\sqrt{x}\ge0\Leftrightarrow x+\sqrt{x}\ge0\)(vì \(x\ge0\))\(\Leftrightarrow x+\sqrt{x}+1>0\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\)
Vậy A>0 với mọi x để A có nghĩa
Cho biểu thức A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm tập xác định của biểu thức A
b) Rút gọn biểu thức
c) CMR: A>0 với mọi x\(\ne\)1
d) Tìm x để A đạt GTLN,tìm GTLN đó
Giúp với ạ >< Mình đang cần gấp :(
\(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}\)
(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))
\(=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\left(x+2\right)+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\)
\(M=\dfrac{1}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)
Dấu "=" xảy ra khi x = 0
A=\(\dfrac{1}{\sqrt{x-1}-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}+\sqrt{x}}+\dfrac{\sqrt{x^3-x}}{\sqrt{x}-1}\)
a.Rút gọn A
b. tìm x sao cho A=1
c. CMR: với mọi giá trị của x sao cho x >1 ta có A ≥ 0
Cho A= \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm đkxđ và rút gọn
b) CM: A>0 với mọi x thuộc đkxđ
c) Tìm GTLN của A
Mysterious Person Nguyễn Thanh Hằng Phương An giúp mk với. thanks!!
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)
b: Vì x+căn x+1>0
nên A>0
Cho A= \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm đkxđ và rút gọn
b) CM: A>0 với mọi x thuộc đkxđ
c) Tìm GTLN của A
Cho A= \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm đkxđ và rút gọn
b) CM: A>0 với mọi x thuộc đkxđ
c) Tìm GTLN của A
Cho A= \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm đkxđ và rút gọn
b) CM: A>0 với mọi x thuộc đkxđ
c) Tìm GTLN của A
a) điều kiện xác định : \(x\ge0;x\ne1\)
ta có : \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(\Leftrightarrow A=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\)
\(\Leftrightarrow A=\left(\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{2}\) \(\Leftrightarrow A=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\dfrac{2}{\sqrt{x}-1}\) \(\Leftrightarrow A=\dfrac{2}{x+\sqrt{x}+1}\)a) ta có : \(A=\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}>0\forall x\)
c) ta có : \(A=\dfrac{2}{x+\sqrt{x}+1}\le\dfrac{2}{1}=2\) (vì \(x\ge0\) )
\(\Rightarrow\) \(A_{max}=2\) khi \(x=0\)
Mysterious Person Nguyễn Huy Tú Phương An giup mk voi
cho P= (x+1)(x+2)(x+3)(x+4)+1
a) CMR: P lớn hơn hoặc bằng 0 với mọi x
b) Tính P với x= \(\dfrac{\sqrt{7}-5}{2}\)
a: \(P=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+5\right)^2>=0\)
b: \(P=\dfrac{16-5\sqrt{7}}{2}+\dfrac{5\sqrt{7}-25}{2}+5\)
\(=\dfrac{-9}{2}+5=\dfrac{1}{2}\)
Cho A= \(\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
Với x>=0, x#1
a.Rút gọn A
b. CMR: 0<=A<=1
a) \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x^3}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{2}{x-\sqrt{x}+1}\)
\(A=\dfrac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{2\left(\sqrt{x}+1\right)}{\left(x-\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) Chứng minh \(A\ge0\)
Ta có \(A=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x^2}-2\sqrt{x}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Mà \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\) và \(\sqrt{x}\ge0\)
\(\Rightarrow A=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge0\) (1)
Chứng minh \(A\le1\)
Ta có \(A=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\)
\(\Leftrightarrow\sqrt{x}\le x-\sqrt{x}+1\)
\(\Leftrightarrow2\sqrt{x}\le x+1\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow x+1\ge2\sqrt{x}\) ( luôn đúng với mọi \(x\ge0\) )
Vậy \(A\le1\) (2)
Từ (1) và (2)
\(\Rightarrow0\le A\le1\) ( đpcm )