Cmr a:102011+2/3 là 1 số tự nhiên
b:102012+8/9 là 1 số tự nhiên
A=102012+1/102011+1 và B=102011+1/102010+1
\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)
10^2012+10>10^2011+10
=>9/10^2012+10<9/10^2011+10
=>-9/10^2012+10>-9/10^2011+10
=>A>B
Cho A= 102012 + 102011+ 102010 +102009 Chứng minh A không phải là số chính phương
1. Tìm số tự nhiên A để phân số 15/a-2 là số tự nhiên.
2.Tìm số tự nhiên A để phân số a+8/a+1 là số tự nhiên.
3.Tìm số tự nhiên A để phân số 2.a+11/a+1 là số tự nhiên.
4. Chứng tỏ :1<a/b+c+b/c+a+c/a+b<2
1) CMR biểu thước sau ko là lập phương của 1 số tự nhiên :
10150 + 5.1050 + 1
2) CMR: tích của 3 số tự nhiên liên tiếp ko là lập phương của một số tự nhiên
3) CMR : với mọi số tự nhiên a , tồn tại số tự nhiên b sao cho : ab + 4 là số chính phương
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Cmr :
a) \(36^{36}-9^{10}\) chia hết cho 45
b) \(7^{1000}-3^{1000}\) chia hết cho 10
c)\(\left(2^{10}+2^{11}+2^{12}\right):7\)là 1 số tự nhiên
d)\(\left(8^{10}-8^9-8^8\right):55\) là 1 số tự nhiên
1.
a) Tìm số tự nhiên nhỏ nhất biết rằng số đó chia 9 dư 1; chia 7 dư 4; chia cho 5 dư 3.
b) CMR: \(\frac{10^{2014}+8}{72}\) là một số tự nhiên
bài 1:
a, chứng tỏ rằng số \(\frac{10^{2015}+8}{9}\)là 1 số tự nhiên
b,tìm 2 số tự nhiên có tổng bằng 432 và UCLN của chúng là 36
c,tìm số tự nhiên n để phân số A =\(\frac{8n+193}{4n+3}\)có giá trị là 1 số tự nhiên
a, A= 10^2015+8/9
=1000...08/9 ( 2015 chữ số 0)
Tử có tổng các chữ số bằng 1+8=9 chia hết cho 9
<=>A là 1 số tự nhiên
cho A = 102012 + 102011 + 102010 + 102009 + 8
Sửa đề: Chứng mình chia hết 24
Tách: 24=8.3
⇒3 (1)
8 (Vì: 0088) (2)
Từ (1) và (2) ⇒A24 Vì: (3,8)
⇒đpcm
tham khảo
https://olm.vn/hoi-dap/detail/48844794829.html
A=10 2012+10 2011+10 2010+10 2009+8
= 100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
= (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8
=12