Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lý Nhất Thích
Xem chi tiết
nguyenthichiem
25 tháng 1 2017 lúc 20:48

mk đc thầy cho làm bài này rồi nên cảm thấy nó dễ mà

Mai Nhật Lệ
25 tháng 1 2017 lúc 20:51

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Còn lại thì dễ rồi bạn nhé

Lý Nhất Thích
25 tháng 1 2017 lúc 21:09

lộn đề

Nguyễn Mạnh Trung
Xem chi tiết
Devil
8 tháng 3 2016 lúc 16:49

\(\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\right)=\frac{0,33x}{2009}\)

\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)

\(\left(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

\(1-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{99}{100}=\frac{0,33x}{2009}\Rightarrow2009x99=0,33x\times100\)

198891:100:0,33=6027=x

Đặng Thị Mai Nga
Xem chi tiết
svtkvtm
24 tháng 3 2019 lúc 21:14

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+.....+\frac{1}{97.100}=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......+\frac{1}{97}-\frac{1}{100}\right)=\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

Trương Ngọc Khuê
24 tháng 3 2019 lúc 21:17

Gọi dãy phân số trên là A

A = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

A = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

A = \(1-\frac{1}{100}\)

A = \(\frac{99}{100}\)

Nguyễn Quỳnh Chi
4 tháng 4 2019 lúc 17:48

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

=\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

=\(\frac{1}{3}.\left(1-\frac{1}{100}\right)\)

=\(\frac{1}{3}.\frac{99}{100}\)=\(\frac{33}{100}\)

ngothithuyduyen
Xem chi tiết
doremon
3 tháng 5 2015 lúc 7:12

=> S = \(\frac{1}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+....+\frac{1}{97.100}\right)\)

        = \(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)

        = \(\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

bao binh
12 tháng 3 2017 lúc 20:33

\(S=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\left(1-\frac{1}{100}\right)\)

\(S=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

hoang
12 tháng 3 2017 lúc 20:38

1-1/4cong 1/4 -1/7 cong.....cong 1/97-1/100

1-1/100

99/100

ThienYet_dangyeu
Xem chi tiết
Đức Nguyễn Ngọc
27 tháng 4 2016 lúc 21:50

Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)

           1/4-1/7 = 3/28 = 3.(1/4.7)

A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)

A = 3.(1-1/100)

A = 3.(99/100)

A = 297/100

l҉o҉n҉g҉ d҉z҉
27 tháng 4 2016 lúc 21:50

\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}\)

\(A=\frac{33}{100}\)

Lindan0608
Xem chi tiết
KAl(SO4)2·12H2O
19 tháng 3 2019 lúc 16:54

a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

\(\Leftrightarrow2^x\left(1+2^1+2^2+2^2\right)=15.2^x\)

\(\Leftrightarrow15.2^x=480\)

\(\Leftrightarrow2^x=480:15\)

\(\Leftrightarrow2^x=32\)

\(\Leftrightarrow2^x=2^5\)

=> x = 5

Trí Tiên亗
30 tháng 7 2020 lúc 16:49

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1}{3}.\frac{99}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{1.33}{1.100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)

\(\Leftrightarrow33.x=66297\)

\(\Leftrightarrow x=22099\)

Khách vãng lai đã xóa
Katori Nguyễn
Xem chi tiết
Nguyễn Phương Uyên
21 tháng 5 2018 lúc 14:11

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)

\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\cdot\frac{48}{98}\)

\(A=\frac{16}{98}=\frac{8}{49}\)

\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)

\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)

\(B=2\cdot\frac{33}{100}\)

\(B=\frac{33}{50}\)

Never_NNL
21 tháng 5 2018 lúc 14:11

A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98

3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98

3A = 1/2 - 1/98

3A = 24/49

A = 24/49 : 3

A = 72/49

B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100

3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100

3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100

3/2B = 1 - 1/100

3/2B = 99/100

B = 99/100 : 3/2

B = 33/50

Duc Loi
21 tháng 5 2018 lúc 14:12

\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}=\frac{24}{49}\)

\(\Rightarrow A=\frac{24}{49}:3=\frac{8}{49}.\)

Vậy \(A=\frac{8}{49}.\)

\(\frac{3}{2}B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)

\(\Rightarrow\frac{3}{2}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow\frac{3}{2}B=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow B=\frac{99}{100}:\frac{3}{2}=\frac{33}{50}.\)

Vậy \(B=\frac{33}{50}.\)

Trần Đình Dủng
Xem chi tiết
Tào Tháo Đường
25 tháng 2 2020 lúc 20:23

B =\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...\frac{2}{97.100}\)

=2.(\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\))

3B=2.(\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\))

3B=2.(\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\))

3B=2.(1-\(\frac{1}{100}\))

3B=2.\(\frac{99}{100}\)=\(\frac{99}{50}\)

=>B=\(\frac{99}{50}:3\)=\(\frac{33}{50}\)

Tick mik nha

Khách vãng lai đã xóa
Yoshinaga
Xem chi tiết
Nguyễn Thị Ngọc Ánh
1 tháng 4 2018 lúc 8:53

1. Tìm x

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)

\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=x\)

\(\Rightarrow1-\frac{1}{100}=x\)

\(\Rightarrow x=\frac{99}{100}\)

\(2.Tính\)

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

học vui!!

Nguyễn Thị Ngọc Ánh
1 tháng 4 2018 lúc 9:08

Xin lỗi nha. Bài 1 mk làm sai. Lại nè:

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)

\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)=x\)

\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=x\)

\(\frac{1}{3}.\left(1-\frac{1}{100}\right)=x\)

\(\frac{1}{3}\cdot\frac{99}{100}=x\)

\(\frac{33}{100}=x\)

Nguyễn Ngọc Duyên
1 tháng 4 2018 lúc 9:36

1. Tìm x

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}=x\)

\(\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)=x\)

\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)=x\)

\(\frac{1}{3}.\left(1-\frac{1}{100}\right)=x\)

\(\frac{1}{3}.\frac{99}{100}=x\)

\(\frac{1.99}{3.100}=\frac{1.33}{1.100}=x\)

\(\frac{33}{100}=x\)

Vậy :  \(x=\frac{33}{100}\)

2 . tính

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{1}{5}+\frac{-1}{12}\)

\(=\frac{12}{60}+\frac{-5}{60}\)

\(=\frac{7}{60}\)