Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trang
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 15:39

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

Trịnh Đình Thi
28 tháng 11 2021 lúc 10:48
Lol .ngudoots
Khách vãng lai đã xóa
Nguyễn Anh Huy
Xem chi tiết
Ngân Hoàng Trường
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2019 lúc 16:36

3(x – y)– 5x(y – x) = 3(x - y) + 5x(x - y)

= (3 + 5x)(x - y)

Nguyễn Thanh Thương
27 tháng 7 2022 lúc 9:27

3( x - y ) - 5x(y-x)

= 3( x -y )+ 5x ( x - y )

= ( 3+5x)(x - y )

 

Bánh cá nướng :33
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 7:50

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Phạm Long Khánh
Xem chi tiết
lê hoàng tiến
28 tháng 8 2018 lúc 14:26

Ta có: (x-y)^3+(y-z)^3+(z-x)^3 
Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau 
(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

Đường Quỳnh Giang
28 tháng 8 2018 lúc 23:27

cách khác:

Đặt:   \(x-y=a;\)\(y-z=b;\)\(z-x=c\)

suy ra:    \(a+b+c=0\)

=>  \(a+b=-c\)

=>  \(\left(a+b\right)^3=-c^3\)

=>  \(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3\)

<=>  \(a^3+b^3+c^3=-3ab\left(a+b\right)\)

<=>  \(a^3+b^3+c^3=-3ab\left(-c\right)=3abc\)

Thay trở lại đc:    \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

Thanh Tô
Xem chi tiết
vũ tiền châu
11 tháng 7 2018 lúc 18:56

t chỉ cho kết quả thôi nhá, còn nhóm nhân tử you tự xử nhá !

=(x-y)(z-x)(z-y)(x+y+z)

KAl(SO4)2·12H2O
11 tháng 7 2018 lúc 19:23

\(\left(x-y\right)z^3+\left(z-z\right)y^3+\left(y-z\right)x^3\)

\(=z^3\left(x-y\right)+y^3\left(z-x\right)+x^3\left(y-z\right)\)

\(=xz^3-yz^3+\left(z-x\right)y^3+\left(y-z\right)x^3\)

\(=xz^3-yz^3+y^3z-xy^3+\left(y-z\right)x^3\)

\(=xz^3-yz^3+y^3z-xy^3+y^3z-xy^3+x^3y-x^3z\)

Mk ko chắc

Không Tên
11 tháng 7 2018 lúc 22:07

\(\left(x-y\right)z^3+\left(z-x\right)y^3+\left(y-z\right)x^3\)

\(=\left(x-y\right)z^3-\left[\left(x-y\right)+\left(y-z\right)\right]y^3+\left(y-z\right)x^3\)

\(=\left(x-y\right)z^3-\left(x-y\right)y^3-\left(y-z\right)y^3+\left(y-z\right)x^3\)

\(=\left(x-y\right)\left(z^3-y^3\right)+\left(y-z\right)\left(x^3-y^3\right)\)

\(=\left(x-y\right)\left(z-y\right)\left(z^2+zy+y^2\right)+\left(y-z\right)\left(x-y\right)\left(x^2+y^2+xy\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x^2+y^2+xy-z^2-y^2-zy\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(x+y+z\right)\)

huỳnh
Xem chi tiết
nthv_.
22 tháng 11 2021 lúc 15:00

\(a,=x^2-9-x^2+6x-9=6x-18\\ b,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)

cuacon
Xem chi tiết
Liên Đào
Xem chi tiết
Hoàng Phúc
23 tháng 1 2017 lúc 21:11

-(z+x)3  mới đúng-

đặt x+y=a , y+z=b , z+x=c thì a+b+c=2(x+y+z)

ta có 8(x+y+z)3-(x+y)3-(y+z)3-(z+x)3=[2(x+y+z)]3-(x+y)3-(y+z)3-(z+x)3=(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a) 

=3(x+2y+z)(y+2z+x)(z+2x+y)