Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
JUST DO IT
Xem chi tiết
Phan Thị Bích Ngọc
12 tháng 7 2018 lúc 10:19

Ta có: x/2=y/3 =>x/8=y/12  (1)

          y/4=z/5 =>y/12=z/15  (2)

Từ 1 và 2 => x/8=y/12=z/15

         => (x/8)2=(y/12)2=z/15

      hay  x2/64=y2/144=z/15

Áp dụng t/c của dãy tỉ số bằng nhau,có

 x2/64=y2/144=z/15=(x- y2)/(64 - 144)= -16/-80=1/5

Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5

                           =>x=\(\sqrt{\frac{64}{5}}\)

            y2/144=1/5 => y2=144 . 1/5=144/5

                             =>y=\(\sqrt{\frac{144}{5}}\)

            z/15 = 1/5 => z =15 . 1/5=3

  mk lm sai thì thôi nha ^-^

Lê Minh Thuận
Xem chi tiết
HT.Phong (9A5)
13 tháng 1 lúc 19:16

Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)

\(\Rightarrow x=3k;y=2k;z=-2k\) 

Ta có: \(x^2+3y^2-z^2=17\)

\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)

\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)

\(\Rightarrow17k^2=17\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

Khi k = 1 thì:

\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)

Khi k = -1 thì: 

\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)

mynameisbro
Xem chi tiết
Nguyễn Đức Trí
21 tháng 9 2023 lúc 4:57

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

Trần Tử Hàm
Xem chi tiết
Nguyễn Hoài Thương
Xem chi tiết
trần thị mai
Xem chi tiết
Hot Girl
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Huy Tú
14 tháng 7 2021 lúc 14:54

Đề sai rồi bạn nhé

Shiba Inu
14 tháng 7 2021 lúc 14:55

2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai  ucche

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 14:55

Sửa đề: x+y+z=10

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y+z=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{10}{10}=1\)

Do đó: x=2; y=3; z=5

Phạm Thị Tâm Tâm
Xem chi tiết
Dich Duong Thien Ty
22 tháng 7 2015 lúc 10:13

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)

Giang Hương Nguyễn
9 tháng 8 2017 lúc 8:56

Đún đấyg