Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trường Thịnh
Xem chi tiết
Trường Thịnh
24 tháng 2 2018 lúc 16:18

help me

Uzumaki Naruto
Xem chi tiết
Lê Đình Trung
Xem chi tiết
nguyen thi vang
9 tháng 1 2021 lúc 20:37

1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7

Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.

Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.

3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có: 

\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)

Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).

 

Như Dương
Xem chi tiết
Như Dương
29 tháng 8 2021 lúc 10:15

ai giúp em bài1 và phần b bài 2 với ạ

 

võ dương thu hà
Xem chi tiết
pham trung thanh
Xem chi tiết
Quỳnh Giang Bùi
7 tháng 10 2017 lúc 8:37

nhân cái đầu với cái cuối

trần thị hoa
Xem chi tiết
truong trong nhan
Xem chi tiết
Trầnnhy
Xem chi tiết
ngonhuminh
17 tháng 7 2017 lúc 9:53

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

ngonhuminh
17 tháng 7 2017 lúc 8:09

1)

f(x) =x^2 -(2y -3)x +2y^2 -3y+2 =0
cần x nguyên
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
<=> 4y^2 -12y +9 -8y^2 +12y -8 =k^2
<=> -4y^2 +1 =k^2
<=> k^2 +4y^2 =1
=> y=0
với y =0 => x =-1 ; x =-2
kết luận
(x,y) =(-1;0) ; (-2;0)

2)

<=> y(xy^2 +y+4x) =6
xét g(y) =xy^2 +y+4x phải nguyên
=> $\Delta$ (y) =1 -16x^2 =k^2
k^2 +16x^2 =1
x nguyên => x =0 duy nhất
với x = 0
f(y) = y^2 =6 => vô nghiệm nguyên

ngonhuminh
17 tháng 7 2017 lúc 9:47

<=> y(xy^2 +y+4x) =16
hệ nghiệm nguyên
y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16} (1)
xy^2 +y+4x ={-1,-2,-4,-8,-16,16,8,4,2, 1} (2)

từ (2) <=>xy^2 +y+4x =a
với a ={-1,-2,-4,-8,-16,16,8,4,2,1} tương ứng y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16}

x =`$\frac{a-y}{y^2 +4}$`
a-y = { 15 , 6, 0, -6,-15,15, 6, 0, -6,-15 }
y^2 +4 = { 260,68, 20, 8, 5, 5, 8,20, 68,260 }

a-y=0 hoặc cần |a-y| >= y^2 +4
=> có các giá tri x nguyên
x ={0, -3,3,0}
y ={-4,-1,1,4}
kết luận nghiệm
(x,y) =(0,-4) ; (-3;-1) ;(3;1); (0;4)