Giải giúp b, f với ạ
Giải giúp em câu bcdef với ạ riêng b,e,f giải đưa về cos giúp em
b.
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=-\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{2\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\pi+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow\dfrac{3}{5}sinx-\dfrac{4}{5}cosx=1\)
Đặt \(\dfrac{3}{5}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{4}{5}=sina\)
Pt trở thành:
\(sinx.cosa-cosx.sina=1\)
\(\Leftrightarrow sin\left(x-a\right)=1\)
\(\Leftrightarrow x-a=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=a+\dfrac{\pi}{2}+k2\pi\)
d.
\(\Leftrightarrow\dfrac{\sqrt{2}}{2}sinx-\dfrac{\sqrt{2}}{2}cosx=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
cho các số a, b, c, d,e,f nguyên dương. Biết: (a/f) > (b/d) > (c/e)
và af - be = 1. CMR: d > b + f.
giải giúp với ạ.
giải giúp em vs ạ
Cho f(x) = 2ax^2-4(bx-1)+5x+c-11 với a b c là các hằng số xác định a b c để F(x)=x^2-5x+6
Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)
\(=2ax^2-4bx+4+5x+c-11\)
\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)
\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)
mọi ng giải giúp em câu e,f bài 1 với ạ
e:
\(E=\left(\dfrac{\sqrt{15}-\sqrt{20}}{2-\sqrt{3}}+\dfrac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(-\dfrac{\sqrt{5}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}-\dfrac{\sqrt{7}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\dfrac{\sqrt{7}-\sqrt{5}}{1}\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=-2
f: \(F=\sqrt{3}+1+2-\sqrt{3}=3\)
Cho tam thức bậc 2 f(x)=\(-2x^2+8x-8\)
Với \(\forall x\in R\) thì f(x)?
Giải thích giúp em với ạ
\(\left\{{}\begin{matrix}a=-2< 0\\\Delta'=16-16=0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\le0;\forall x\in R\)
mn giúp em bài này với ạ
Cho tam giác ABC vuông tại C , biết AC=15cm , BC=20cm
a) giải tam giác ABC , vẽ đường cao CH , Tính CH
b) kẻ HE vuông góc với AC tại E , HF vuông góc với BC tại F . Chứng minh AC.EC=BC.FC
Mong mọi người giúp em cần gấp ạ.
a: \(AB=\sqrt{CA^2+CB^2}=25\left(cm\right)\)
Xét ΔABC vuông tại C có sin A=BC/BA=4/5
nên góc A\(\simeq\)53 độ
=>góc B=90-53=37 độ
ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*25=15*20=300
=>CH=12(cm)
b: ΔHCA vuông tại H có HE là đường cao
nên CE*CA=CH^2
ΔCHB vuông tại H có FH là đường cao
nên CF*CB=CH^2
=>CE*CA=CF*CB
Giúp em giải bài 1 tìm nghiệm các hàm số: p, o, l, q bài 2 câu e, f với ạ em cám ơn ạ
j, ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
\(tan\left(\dfrac{\pi}{3}+x\right)-tan\left(\dfrac{\pi}{6}+2x\right)=0\)
\(\Leftrightarrow tan\left(\dfrac{\pi}{3}+x\right)=tan\left(\dfrac{\pi}{6}+2x\right)\)
\(\Leftrightarrow\dfrac{\pi}{3}+x=\dfrac{\pi}{6}+2x+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\left(l\right)\)
\(\Rightarrow\) vô nghiệm.
giải giúp em bài 13 với ạ
chỉ cần giải 4 ý cuối thôi ạ ( 2 ý e, hai ý f ạ)
\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)
\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)
\(=-3x^2-14x-3\)
\(=-3\left(x^2+\frac{14}{3}x+\frac{49}{9}\right)+\frac{40}{3}\)
\(=-3\left(x+\frac{7}{3}\right)^2\le0\forall x\)
Dau '' = '' xay ra \(\Leftrightarrow x=\frac{-7}{3}\)
\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)
\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)
\(=-3x^2-14x-3=-3\left(x^2+\frac{14}{3}x\right)-3\)
\(=-3\left(x^2+2.\frac{7}{3}x+\frac{49}{9}-\frac{49}{9}\right)-3\)
\(=-3\left(x+\frac{7}{3}\right)^2+\frac{40}{3}\le\frac{40}{3}\)
Dấu ''='' xảy ra khi x = -7/3
Vậy GTLN của F bằng 40/3 tại x = -7/3
Cho tam thức \(f\left(x\right)=ax^2+bx+c\left(a\ne0\right),\Delta=b^2-4ac\)
Ta có: \(f\left(x\right)\le0.với.\forall x\in R\) khi và chỉ khi?
Giải thích rõ giúp em với ạ, em không hiểu cách xác định dấu:(
\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)
Quy tắc: tam thức bậc 2 ko đổi dấu khi \(\Delta< 0\) (có dấu = hay ko phụ thuộc đề yêu cầu \(f\left(x\right)\) có dấu = hay ko)
Khi đã có \(\Delta< 0\) thì dấu \(f\left(x\right)\) chỉ còn phụ thuộc a. Nếu a dương thì \(f\left(x\right)\) dương trên R, nếu a âm thì \(f\left(x\right)\) âm trên R.