giải phương trình √(x^2+12)-√(x^2+5)=3x-5
Giải phương trình sau:
\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{x^2+12}-4+3-\sqrt{x^2+5}+6-3x=0\)
\(\Leftrightarrow\dfrac{x^2-4}{\sqrt{x^2+12}+4}+\dfrac{4-x^2}{3+\sqrt{x^2+5}}+6-3x=0\)
\(\Leftrightarrow\left(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\right)\left(x-2\right)=0\left(1\right)\)
Từ phương trình suy ra \(3x-5=\sqrt{x^2+12}-\sqrt{x^2+5}>0\Rightarrow x>\dfrac{5}{3}\)
Ta có: \(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\)
\(=\left(\dfrac{1}{\sqrt{x^2+12}+4}-\dfrac{1}{3+\sqrt{x^2+5}}\right)\left(x+2\right)-3< 0\)
Khi đó \(\left(1\right)\Leftrightarrow x=2\left(tm\right)\)
Vậy phương trình đã cho có nghiệm \(x=2\)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
\(\dfrac{1}{x+2}+\dfrac{5}{x-2}=\dfrac{3x-12}{x^2-4}\)
Giải phương trình
\(\Leftrightarrow x-2+5x+10=3x-12\)
=>6x+8=3x-12
=>3x=-20
hay x=-20/3(nhận)
Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
giải phương trình 4(x+5)(x+6)(x+10)(x+12)=3x^2
Xét x=0 ==> loại
Xét x\(\ne\)0,ta chia cả 2 vế cho x2 thu được:
4(x2+17x+60)(x2+16x+60)=3x2
4(x+\(\frac{60}{x}\)+17)(x+\(\frac{60}{x}\)+16)=3
Đặt x+\(\frac{60}{x}\)+16=t,ta được
4(t+1).t=3 <=> 4t2+4t-3=0 <=> t=\(\frac{1}{2}\)hoặc t=\(\frac{-3}{2}\)
Với t=1/2,ta có x+\(\frac{60}{x}\)+16=1/2 <=> x=-15/2 hoặc x=-8
Với t=-3/2,ta có x+\(\frac{60}{x}\)+16=-3/2 <=> ... bạn tự giải nốt nhé.
giải các phương trình sau
1/ 7x-5=13-5x
2/ 19+3x=5-18x
3/ x^2+2x-4=-12+3x+x^2
4/ -(x+5)=3(x-5)
5/ 3(x+4)=(-x+4)
1/ \(7x-5=13-5x\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy: \(S=\left\{\dfrac{3}{2}\right\}\)
==========
2/ \(19+3x=5-18x\)
\(\Leftrightarrow21x=-14\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy: \(S=\left\{-\dfrac{2}{3}\right\}\)
==========
3/ \(x^2+2x-4=-12+3x+x^2\)
\(\Leftrightarrow-x=-8\)
\(\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
===========
4/ \(-\left(x+5\right)=3\left(x-5\right)\)
\(\Leftrightarrow-x-5=3x-15\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy: \(S=\left\{\dfrac{5}{2}\right\}\)
==========
5/ \(3\left(x+4\right)=\left(-x+4\right)\)
\(\Leftrightarrow3x+12=-x+4\)
\(\Leftrightarrow4x=-8\)
\(\Leftrightarrow x=-2\)
Vậy: \(S=\left\{-2\right\}\)
[----------]
1. \(7x-5=13-5x\) \(\Leftrightarrow12x=18\Leftrightarrow x=\dfrac{3}{2}\)
2. \(19+3x=5-18x\Leftrightarrow21x=-14\Leftrightarrow x=-\dfrac{2}{3}\)
3. \(x^2+2x-4=-12+3x+x^2\Leftrightarrow-x=-8\Leftrightarrow x=8\)
4. \(-\left(x+5\right)=3\left(x-5\right)\Leftrightarrow-x-5=3x-15\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)
5. \(3\left(x+4\right)=-x+4\Leftrightarrow3x+12=-x+4\Leftrightarrow4x=-8\Leftrightarrow x=-2\)
1) Ta có: \(7x-5=13-5x\)
\(\Leftrightarrow12x=18\)
hay \(x=\dfrac{3}{2}\)
2) Ta có: \(19+3x=5-18x\)
\(\Leftrightarrow21x=-14\)
hay \(x=-\dfrac{2}{3}\)
3) Ta có: \(x^2+2x-4=x^2+3x-12\)
\(\Leftrightarrow3x-12=2x-4\)
hay x=8
4) Ta có: \(-\left(x+5\right)=3\left(x-5\right)\)
\(\Leftrightarrow-x-5-3x+15=0\)
\(\Leftrightarrow-4x=-10\)
hay \(x=\dfrac{5}{2}\)
giải các phương trình sau:
a.3(x-2)-10=5(2x + 1)
b.3x + 2=8 -2(x-7)
c.2x-(2+5x)= 4(x + 3)
d.5-(x +8)=3x + 3(x-9)
e.3x - 18 + x= 12-(5x + 3)
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
giải phương trình: \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)
Phương trình trở thành:
\(a+b=\dfrac{a^2-b^2}{2}\)
\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))
\(\Leftrightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)
\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)
\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))
\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)
\(\Leftrightarrow7x^2+6x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)
Giải Phương Trình:
\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
ĐK để phương trình có nghiệm \(3x-5\ge0\Rightarrow x\ge\frac{5}{3}\left(1\right)\)
nhẩm được \(x=2\)là nghiệm của phương trình trình ta sẽ thêm bớt vào hai vế để có thừa số chung là \(x-2\)
\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)(trục căn thức ):
\(\frac{\left(\sqrt{x^2+12}-4\right)\left(\sqrt{x^2+12}+4\right)}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{\left(\sqrt{x^2+5}-3\right)\left(\sqrt{x^2+5}+3\right)}{\sqrt{x^2+5}+3}\)
\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)\(\Leftrightarrow\left(x-2\right)\left[\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right]=0\)
TH1 :\(x-2=0\Leftrightarrow x=2\)\(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3=0\)dễ thấy \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\)với ĐK (1) Ta có : \(\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}< 0\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3=0\left(VN\right)\)