giải phương trình nghiệm nguyên \(^{x^2+2xy-7x-12=0}\)
Tìm nghiệm nguyên của phương trình : y2+2xy-7x-12=0
Với \(y\ne\frac{7}{2}\)(Do y nguyên) thì\(y^2+2xy-7x-12=0\Leftrightarrow x\left(7-2y\right)=y^2-12\Leftrightarrow x=\frac{y^2-12}{7-2y}\)
Vì x nguyên nên \(\frac{y^2-12}{7-2y}\)nguyên \(\Rightarrow y^2-12⋮2y-7\Rightarrow4y^2-48⋮2y-7\Rightarrow\left(2y-7\right)^2+14\left(2y-7\right)+1⋮2y-7\Rightarrow1⋮2y-7\)\(\Rightarrow2y-7\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow\orbr{\begin{cases}2y-7=-1\\2y-7=1\end{cases}}\Rightarrow\orbr{\begin{cases}y=3\\y=4\end{cases}}\)
* Với y = 3 thì x = -3
* Với y = 4 thì x = -4
Vậy phương trình có 2 cặp nghiệm nguyên (x; y) = (-3; 3) ; (-4; 4)
Giúp mình bài này với nhé: tìm GTNN của thương của phép chia (4x^5+4x^4+4x^3-x-1):(2x^3+x-1), nhớ là đặt phép chia giùm mình luôn đừng ghi kết quả thôi nhé
Giải nghiệm nguyên của phương trình :
\( x^2+2xy+y^2+x+4y=0\)
a) Tìm nghiệm nguyên của phương trình : \(xy^2+2xy-243y+x=0\)
b) Giải phương trình: \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
a) xy2 + 2xy - 243y + x = 0
\(\Leftrightarrow\)x ( y + 1 )2 = 243y
Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2
Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }
+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)
+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)
vậy ...
b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )
\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)
\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)
\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)
Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)
Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2
giải phương trình nghiệm nguyên x^2-2xy^2-5xy-x-2y-7=0
giải phương trình nghiệm nguyên X^2+2XY+X+Y^2+4Y=0
ai biết cách nhẩm nghiệm phương trình bậc 3 không ạ
giải pt: 2x^3 + 7x^2 - x - 12 =0
giải pt : - x^3 + x^2 + 7x + 2 =0
mình vừa lên lớp 9 , chưa học phương trình bậc 2
a)2x3 + 7x2 - x - 12 =0
=>2x3+x2-4x+6x2+3x-12=0
=>x(2x2+x-4)+3(2x2+x-4)=0
=>(x+3)(2x2+x-4)=0
=>x+3=0 hoặc 2x2+x-4=0
Xét x+3=0 <=>x=-3
Xét 2x2+x-4=0 ta dùng delta
\(\Delta=1^2-\left(-4\left(2.4\right)\right)=33>0\)
=>pt có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{-1\pm\sqrt{33}}{4}\)
b)- x^3 + x^2 + 7x + 2 =0
=>-x3+3x2+x-2x2+6x+2=0
=>-x(x2-3x-1)+(-2)(x2-3x-1)=0
=>-(x+2)(x2-3x-1)=0
=>-(x+2)=0 hoặc x2-3x-1=0
Xét -(x+2)=0 <=>x=-2
Xét x2-3x-1=0 theo delta ta có:
\(\Delta=\left(-3\right)^2-\left(-4\left(1.1\right)\right)=13>0\)
=>pt cũng có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{3\pm\sqrt{13}}{2}\)
Giải phương trình nghiệm nguyên:\(x^2+2y^2-2xy+4x-3y-26=0\)
giải phương trình nghiệm nguyên xy2+2xy-8y+x=0
giúp em với ạ
\(xy^2+2xy-8y+x=0\)
\(\Leftrightarrow xy^2+2xy+x=8y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=8y\)
\(\Leftrightarrow x\left(y+1\right)^2=8y\)
\(\Leftrightarrow\left(y+1\right)^2=\dfrac{8y}{x}=2^2.\dfrac{2y}{x}\left(x\ne0\right)\left(1\right)\)
Ta thấy \(VP=\left(y+1\right)^2\) là số chính phương lẻ hoặc chẵn
mà \(VP=2^2.\dfrac{2y}{x}\) là số chính phương chẵn \(\left(2^2;\dfrac{2y}{x}⋮2\right)\) và \(\dfrac{2y}{x}\) cũng là số chính phương
\(\Rightarrow\left(y+1\right)^2\) là số chính phương chẵn
\(\Rightarrow y\) là số lẻ
Vậy để thỏa \(\left(1\right)\) ta thấy \(y=1;x=2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right)\right\}\left(x;y\in Z\right)\)
xy^3 + 2xy^2 - 8y^2 + x = 0
Đặt z=xy, ta được:z^3 + 2z^2 - 8z + x = 0
Phương trình này có thể được giải bằng cách sử dụng phương pháp phân tích đa thức. Ta có:z = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
Thay z bằng xy, ta được:xy = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
Giải nghiệm nguyên cho x và y, ta được:(x, y) = (1, 1), (1, -1), (-1, 1), (-1, -1)
Vậy, nghiệm nguyên của phương trình xy2+2xy−8y+x=0 là (1,1),(1,−1),(−1,1),(−1,−1).
thumb_upthumb_down
share
Tìm trên Google
Bổ sung \(x=-2;y=-1\) thỏa \(\left(1\right)\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;-1\right);\left(2;1\right)\right\}\)
Giải phương trình nghiệm nguyên : \(2x^2y^2-3x^2y+2xy^2+x^2-x+y=0\)