Tìm x biết: a) $\sqrt{x^2-1}$ - x= 0 b) $\sqrt{4-x} -2
Tìm x biết
a/\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}=0}\)
b/\(x-5\sqrt{x}+6=0\)
a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)
\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)
\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)
\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)
b)\(x-5\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)
Tìm x , y biết :
a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
b) \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4-\sqrt{x}-\sqrt{y}\)
a,ĐKXĐ:\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4-\sqrt{x}-\sqrt{y}\left(đk:x;y>0\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}=4\)
Do x,y là các số thực dương nên sử dụng BĐT AM-GM cho 2 số không âm ta có :
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}=2\)
\(\frac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}\ge2+2=4\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\Leftrightarrow x=1\\\frac{1}{\sqrt{y}}=\sqrt{y}\Leftrightarrow y=1\end{cases}\Leftrightarrow}x=y=1\)
Vậy nghiệm của phương trình trên là \(x=y=1\)
Tìm x
\(a.\sqrt{2+\sqrt{3+\sqrt{x}}=3}\)
\(b.\sqrt{x^2-4}+\sqrt{x+2}=0\)
\(c.\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
A=\(2\sqrt{12}-\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
B=\(\dfrac{x}{x-16}+\dfrac{2}{\sqrt{x}-4}+\dfrac{2}{\sqrt{x}+4}\)( Với x\(\ge\)0; x\(\ne\)16)
a) Rút gọn 2 biểu thức A, B
b) Tìm giá trị của x để B\(-\dfrac{1}{2}\)A=0
\(a,A=4\sqrt{3}-5\sqrt{3}+2-\sqrt{3}=2-2\sqrt{3}\\ B=\dfrac{x+2\sqrt{x}+8+2\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\\ b,B-\dfrac{1}{2}A=\dfrac{\sqrt{x}}{\sqrt{x}-4}-\dfrac{1}{2}\left(2-2\sqrt{3}\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-4}=1+\sqrt{3}\\ \Leftrightarrow\sqrt{x}=\left(1+\sqrt{3}\right)\left(\sqrt{x}-4\right)\Leftrightarrow\sqrt{x}=\sqrt{x}-4\sqrt{3}+\sqrt{3x}-4\\ \Leftrightarrow\sqrt{3x}=4\sqrt{3}+4\\ \Leftrightarrow\sqrt{x}=\dfrac{4\sqrt{3}+4}{\sqrt{3}}\\ \Leftrightarrow\sqrt{x}=\dfrac{12+4\sqrt{3}}{3}\\ \Leftrightarrow x=\dfrac{192+96\sqrt{3}}{9}=\dfrac{64+32\sqrt{3}}{3}\)
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{8\sqrt{x}}{4-x}\right):\dfrac{\sqrt{x}+2}{1-2\sqrt{x}}\)
với x ≥ 0 , x ≠ 4 . x ≠ 1/4
a. Rút gọn A
b. Tìm x để A = -1/3
A=\(2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)
B=\(\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\) (0 nhỏ hơn hoặc bằng x; x khác 1)
a) Rút gọn A, B
b) Tìm giá trị của x đề A=4\(\sqrt{B}\)
Help meeeeeeeeeeee
\(a,A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\\ =2.2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\sqrt{3^2}-1}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =-\dfrac{2\left(\sqrt{3}-1\right)}{2}+\left|\sqrt{3}+1\right|\\ =-\sqrt{3}+1+\sqrt{3}+1\\ =2\)
\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\left(dk:x\ge0,x\ne1\right)\\ =\left(1+\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\left(1-\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\\ =1-x\)
\(b,A=4\sqrt{B}\Leftrightarrow4\sqrt{1-x}=2\\ \Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\\ \Leftrightarrow\left|1-x\right|=\dfrac{1}{4}\)
\(\Leftrightarrow1-x=\dfrac{1}{4}\\ \Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
Vậy \(x=\dfrac{3}{4}\) thì \(A=4\sqrt{B}\).
a) \(A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)
\(A=2\cdot2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-4\sqrt{5}+\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}\)
\(A=4\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(A=-\left(\sqrt{3}-1\right)+\sqrt{3}+1\)
\(A=-\sqrt{3}+1+\sqrt{3}+1\)
\(A=2\)
\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
\(B=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(B=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
\(B=1^2-\left(\sqrt{x}\right)^2\)
\(B=1-x\)
b) Ta có: \(A=4\sqrt{B}\)
\(\Rightarrow2=4\sqrt{1-x}\)
\(\Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\)
\(\Leftrightarrow1-x=\dfrac{1}{4}\)
\(\Leftrightarrow x=1-\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
Bài 1: Cho biểu thức A= \(\dfrac{x-4}{\sqrt{x}+2}\) B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) - \(\dfrac{\sqrt{x}-1}{2-\sqrt{x}}\)-\(\dfrac{9-x}{4-x}\) (x ≥ 0, x ≠ 4 )
a) Tính A khi x = \(\dfrac{1}{4}\)
b) Rút gọn B
c) Tìm các giá trị x nguyên sao cho A.B ≤ 2
(mink đag cần gấp)
a) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ
nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(A=\dfrac{x-4}{\sqrt{x}+2}\), ta được:
\(A=\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\left(\dfrac{1}{4}-\dfrac{16}{4}\right):\left(\dfrac{1}{2}+2\right)=\dfrac{-15}{4}:\dfrac{5}{2}\)
\(\Leftrightarrow A=\dfrac{-15}{4}\cdot\dfrac{2}{5}=\dfrac{-30}{20}=\dfrac{-3}{2}\)
Vậy: Khi \(x=\dfrac{1}{4}\) thì \(A=\dfrac{-3}{2}\)
b) Ta có: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-1}{2-\sqrt{x}}-\dfrac{9-x}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2+x+2\sqrt{x}-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4+9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Thay x = \(\dfrac{1}{4}\)vào bt A ta có: A= \(\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\dfrac{-15}{4}:\dfrac{5}{2}=\dfrac{-3}{2}\)
Vậy x = \(\dfrac{1}{4}\)vào bt A nhận giá trị là -3/2
b)
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
5. P = \(\dfrac{x-4\sqrt{x}}{\sqrt{x}+2}\) tìm để P > 0 với x ≥0, x ≠4
6. P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) tìm a để P > 1 với a ≥ 0, x ≠ 1
6: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2< 0\)
hay a<4
Kết hợp ĐKXĐ, ta được: \(0\le a< 4\)
5: Để P>0 thì \(x-4\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}-4>0\)
hay x>16
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
b: Ta có: P=A:B
\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)