Cho 2 biểu thức: \(A=\frac{4x-7}{x-2};B=\frac{3x^2-9x+2}{x-3}\)
a, Tìm x \(\in\)Z để mỗi biểu thức trên nhận giá trị là nguyên
b, Tìm x \(\in\)Z để cả 2 biểu thức trên nhận giá trị nguyên
Bài 1: Cho biểu thức : A= \(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2006}{x}\)
a) Tìm điều kiện của x để biểu thức xác định
b) Rút gọn biểu thức A
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Bài 2: Cho biểu thức : A= \(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn biểu thức A
b)Tính giá trị của A khi|x-\(\frac{7}{2}\)|
c) Tìm x để A= -16
Cho biểu thức:
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
a) Tìm ĐKXĐ rồi rút gọn biểu thức A.
b) Tính giá trị của biểu thức A tại x = -2
c) Tìm điều kiện của x để A > 0.
d) Tính giá trị của A trong trường hợp: |x-7|=4
ĐKXĐ:\(x\ne\pm2;x\ne0;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
\(=\left[\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x^2}{x-3}\)
b
Tại x=-2 thì biểu thức trên không xác định
Vậy A không xác định tại x=-2
c
\(A>0\Leftrightarrow\frac{4x^2}{x-3}>0\) mà \(4x^2>0\) ( nên nhớ là ĐKXĐ x khác 0 ) nên x-3 >0 hay x > 3
d
\(\left|x-7\right|=4\Leftrightarrow x-7=4\left(h\right)x-7=-4\)
\(\Leftrightarrow x=11\left(h\right)x=3\)
Loại trường hợp x=3 bạn thay x=11 vào tính tiếp nha !!!!!
Cho biểu thức :
\(\frac{1}{x+2}-\frac{x^3-4x}{x^2+4x}\left(\frac{1}{x^2+4x+4}+\frac{1}{4-x^2}\right)\)
a) Với giá trị nào của x thì giá trị của biểu thức được xác định
b) Rút gọn biểu thức
Lời giải:
a) ĐKXĐ: \(\left\{\begin{matrix}
x+2\neq 0\\
x^2+4x\neq 0\\
x^2+4x+4\neq 0\\
4-x^2\neq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix}
x+2\neq 0\\
x(x+4)\neq 0\\
(x+2)^2\neq 0\\
(2-x)(2+x)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x+2\neq 0\\
x\neq 0\\
x+4\neq 0\\
2-x\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0; x\neq \pm 2; x\neq -4\)
b)
\(A=\frac{1}{x+2}-\frac{x(x^2-4)}{x(x+4)}\left[\frac{1}{(x+2)^2}-\frac{1}{x^2-4}\right]\)
\(=\frac{1}{x+2}-\frac{x(x^2-4)}{x(x+4)}.\frac{1}{(x+2)^2}+\frac{x(x^2-4)}{x(x+4)}.\frac{1}{x^2-4}\)
\(=\frac{1}{x+2}-\frac{x(x-2)(x+2)}{x(x+4)(x+2)^2}+\frac{1}{x+4}\)
\(=\frac{1}{x+2}-\frac{x-2}{(x+4)(x+2)}+\frac{1}{x+4}=\frac{x+4-(x-2)+(x+2)}{(x+2)(x+4)}=\frac{x+8}{(x+2)(x+4)}\)
Cho biểu thức: A= \(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^{^3}}\right)\)
a, Tìm ĐKXĐ rồi rút gọn biểu thức A
b, Tìm giá trị của x để A>0
c, Tìm giá trị của A trong trường hợp |x-7|=4
Bài làm:
a) \(đkxd:x\ne2;x\ne-2;x\ne0;x\ne3\)
Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(A=\left(\frac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x-3}{x\left(2-x\right)}\)
\(A=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x^2}{x-3}\)
b) Ta có: \(4x^2>0\left(\forall x\ne0\right)\)
=> Để A>0 thì \(x-3>0\)
\(\Rightarrow x>3\)
Vậy với \(x>3\)thì A>0
c) Ta có: \(\left|x-7\right|=4\)\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=11\\x=3\end{cases}}\)
Mà theo điều kiện xác định, \(x\ne3\)
\(\Rightarrow x=11\)
Khi đó, \(A=\frac{4.11^2}{11-3}=\frac{121}{2}\)
Vậy \(A=\frac{121}{2}\)
Học tốt!!!!
1. Cho biểu thức A= \(\left(\frac{x+2}{x+10}-\frac{2x}{x-1}\right).\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
a. Rút gọn A
b. Tìm x để A=3
Cho biểu thức :
A= \(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi \(\left|x-\frac{7}{2}\right|=\frac{1}{2}\)
c) Tìm x để A= -16
Huyền Trang, sao bạn nhiều bài kiểu này thế??
Cho biểu thức:
\(A=x-\left(\frac{16x-x^2}{x^2-4}+\frac{3+2x}{2-x}-\frac{2-3x}{x+2}\right):\frac{x-1}{x^3+4x^2+4x}\)
1) Rút gọn biểu thức A.
2) Tính giá trị của biểu thức A với các giá trị x thỏa mãn:\(|x^2-3|=3-x\)
Cho biểu thức: \(P=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{x^4-4x^2}{4x^2-1}+1\right)\)
a, Rút gọn biểu thức
b, Tìm giá trị của x để P > 0.
cho biểu thức A= \(\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\) (với x \(\ne\)0; x\(\ne\)-2; x\(\ne\)2
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A khi x=4
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
Cho biểu thức: \(P=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{x^4-4x^2}{4x^2-1}+1\right)\)
a, Rút gọn biểu thức
b, Tìm giá trị của x để P > 0.