Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Love
Xem chi tiết
Third Kamikaze
Xem chi tiết
Dương Thị Quỳnh Trang
14 tháng 10 2016 lúc 9:46

3(x - 3) = - 2(2 - x)

3x - 9 = -4 - ( -2x )

3x - 9 = -4 + 2x

3x - 2x = -4 +9

x = 5

Trịnh Dũng
Xem chi tiết
Kiệt Nguyễn
22 tháng 2 2020 lúc 15:29

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Bao Nguyen Trong
Xem chi tiết
Lê Tài Bảo Châu
11 tháng 3 2020 lúc 2:09

Làm tiếp ạ

\(\Rightarrow P\ge\frac{289}{16}\)

Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy MIN P=\(\frac{289}{16}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
11 tháng 3 2020 lúc 13:32

Em chả có cách gì ngoài cô si mù mịt :v

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=\left(x^2+\frac{1}{16y^2}+\frac{1}{16y^2}+.....+\frac{1}{16y^2}\right)\left(y^2+\frac{1}{16x^2}+\frac{1}{16x^2}+.....+\frac{1}{16x^2}\right)\)

\(\ge17\sqrt[17]{\frac{x^2}{16^{16}\cdot y^{32}}}\cdot17\sqrt[17]{\frac{y^2}{16^{16}\cdot x^{32}}}\)

\(=17^2\sqrt[17]{\frac{x^2y^2}{16^{32}\cdot x^{32}\cdot y^{32}}}\)

\(=17^2\sqrt[17]{\frac{1}{16^{32}\cdot\left(xy\right)^{30}}}\)

\(\ge17^2\sqrt[17]{\frac{1}{16^{32}\left(\frac{x+y}{2}\right)^{60}}}=\frac{289}{16}\)

Dấu "=" xảy ra tại x=y=1/2

Khách vãng lai đã xóa
Lê Tài Bảo Châu
11 tháng 3 2020 lúc 2:07

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

\(=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

Áp dụng BĐT AM-GM ta có:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}=\frac{1}{8}\)

\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow x^2y^2\le\frac{\left(x+y\right)^4}{16}=\frac{1}{16}\)

\(\Rightarrow P\ge\frac{1}{8}+\frac{255}{256.\frac{1}{16}}+2\)

Khách vãng lai đã xóa
Best monument
Xem chi tiết
alibaba nguyễn
15 tháng 5 2018 lúc 9:05

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Leftrightarrow xy\ge4\)

\(\Rightarrow A=xy+2017\ge4+2017=2021\)

trinh thi hang
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 2 2021 lúc 6:02

Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)

giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)

+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)

+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)

Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)

=> \(b\in\left\{1;2;3\right\}\)

+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)

+ Với  b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)

+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.

Khách vãng lai đã xóa
Nguyễn Ngọc Lam Quỳnh
Xem chi tiết
Nguyễn Linh Chi
1 tháng 12 2019 lúc 21:02

Ta có: \(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)

=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\)(1)

Ta lại có: \(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)

=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\) (2)

Từ (1); (2) : \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)

<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow x=-1}\)(TM)

Vậy:... 

Khách vãng lai đã xóa
Nguyen Van Khanh
Xem chi tiết
Minh  Ánh
22 tháng 8 2016 lúc 10:19

\(-\frac{\left(-x\right)}{5}-\frac{2}{10}=\frac{1}{-5}-\frac{7}{50}\)

\(\Rightarrow\frac{x}{5}-\frac{2}{10}=-\frac{17}{50}\)

\(\Rightarrow\frac{x}{5}=-\frac{17}{50}+\frac{2}{10}\)

\(\Rightarrow\frac{x}{5}=-\frac{7}{50}\)

\(\Rightarrow x\in\theta\)

tíc mình nha

Bùi Trọng An
Xem chi tiết