cho sina+cosa=1 tính \(sin^3a+cos^3a\)
Giúp mình với các bạn ơi!!!!!!!!!!!!!!
Cho sina*cosa=0.22. Tính giá trị của biểu thức M=\(\sin^3a+\cos^3a-2.\sin a.\cos a\)
cho sina+cosa=5/4
a, A=sina.cosa b, B= sina-cosa c,C=sin^3a-cos^3a
help me
\(sina+cosa=\frac{5}{4}\Rightarrow\left(sina+cosa\right)^2=\frac{25}{16}\)
\(\Rightarrow sin^2a+cos^2a+2sina.cosa=\frac{25}{16}\)
\(sina.cosa=\frac{\frac{25}{16}-1}{2}=\frac{9}{32}\)
b/ \(\left(sina-cosa\right)^2=sin^2a+cos^2a-2sinacosa\)
\(\left(sina-cosa\right)^2=1-2.\frac{9}{32}=\frac{7}{16}\)
\(\Rightarrow sina-cosa=\pm\frac{\sqrt{7}}{4}\)
c/ \(sin^3a-cos^3a=\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)\)
\(=\left(sina-cosa\right)\left(1+\frac{9}{32}\right)=\pm\frac{41\sqrt{7}}{128}\)
Cho sina + cosa =2. Tính sin^3a + cos^3a
ta có : \(sin^3a+cos^3a=\left(sina+cosa\right)^3-3sina.cosa\left(sina+cosa\right)\)
\(=2^3-3sina.cosa\left(2\right)=8-6sina.cosa\)
\(=11-3sin^2a-6sina.cosa-3cos^2a=11-3\left(sin+cos\right)^2=11-3.2^2=11-12=-1\)
rút gọn A=\(\frac{sin^3a-cos^3a}{sina-cosa}+sina+cosa\)
\(A=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}+sina+cosa\)
\(=1+sina.cosa+sina+cosa\)
\(=\left(sina+1\right)\left(cosa+1\right)\)
Chứng minh
\(\left(1+cota\right)sin^3a+\left(1+tana\right)cos^3a=sina+cosa\)
Lời giải:
\((1+\cot a)\sin ^3a+(1+\tan a)\cos ^3a\)
\(=(1+\frac{\cos a}{\sin a})\sin ^3a+(1+\frac{\sin a}{\cos a})\cos ^3a\)
\(=(\sin a+\cos a)\sin ^2a+(\cos a+\sin a)\cos ^2a\)
\(=(\sin a+\cos a)(\sin ^2a+\cos ^2a)=(\sin a+\cos a).1=\sin a+\cos a\)
Tính giá trị biểu thức
\(P=\frac{sin^3a+cos^3a}{sina+cosa}\), biết sina.cosa=1
sina.cosa=1 => sina,cosa≠0 => sina+cosa≠0
\(P=\frac{\sin^3a+\cos^3a}{\sin a+\cos a}=\frac{\left(\sin a+\cos a\right).\left(\sin^2a-\sin a.\cos a+\cos^2a\right)}{\sin a+\cos a}\)
\(=\sin^2a+\cos^2a-\sin a.\cos a=1-1=0\)
Rút gọn:
P= \(\frac{sin^3a-cos^3a}{sina-cosa}\)
Q= \(\frac{sin^3x+cos^3x}{sinx+cosx}\)
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
tan =\(\sqrt{3}\).Tính A=\(\dfrac{sin^3a-cos^3a}{sina-cosa}\)
\(tana=\sqrt{3}\)
nên \(\dfrac{sina}{cosa}=\sqrt{3}\)
=>\(sina=\sqrt{3}\cdot cosa\)
=>a=60 độ
\(A=\dfrac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina\cdot cosa\right)}{sina-cosa}\)
\(=1+sina\cdot cosa=1+\dfrac{1}{2}sin2a\)
\(=1+\dfrac{1}{2}\cdot sin120=\dfrac{4+\sqrt{3}}{4}\)
Chứng minh các đẳng thức sau:
a.\(\frac{1+sin^2x}{1-sin^{2^{ }}x}=1+2tan^2x\)
b.\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=1\)
c.\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}=2cosx\)
e.\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=2cosa\)
d.\(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
MỌI NGƯỜI GIÚP MÌNH VỚI .MÌNH CẢM ƠN RẤT NHIỀU
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)
\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)
\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)
\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)
\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)