Cho phân số \(A=\dfrac{17}{2n+3}\)
Tìm n để A đạt giá trị lớn nhất và tính giá trị đó
GTLN = 16
n = -2
nha bạn chúc bạn học tốt nha
gtln =16
n=-2
chúc bạn hok tốt
GTLN =16
n =-2
các bạn hộ mình nhé
mik cảm ơn
học tốt nhé
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ban hoc lop may vay
Bài 3: Cho phân số B= 4n +1/ 2n-3 , n thuộc Z
a) Tìm n để B là phân số tối giản.
b) Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó.
Mọi người giúp e với ạ rm đng cần gấp ạ
Cho phân số A = \(\frac{6n-4}{2n+3}\)n thuộc Z
a, Tìm n để A nhận giá trị là số nguyên
b, tìm n để A đạt giá trị lớn nhất và tính giá trị đó
Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2
cho phân số A=n+10/2n (với n thuộc N*)
Tìm n để a đạt giá trị lớn nhất tìm giá trị lớn nhất đó
Cho phân số B = \(\frac{4n+1}{2n-3}\), n thuộc Z
a, Tìm n để B là p/s tối giản
b, Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
b, để \(\frac{4n+1}{2n-3}\) lớn nhất
=> 2n - 3 phải nhỏ nhất
mà 2n - 3 phải >0 và khác 0 ( là mẫu số )
=> 2n -3 = 1
=> 2n = 4
n = 2
(ᴾᴿᴼシPickaミ★ácミ ★Quỷ★彡)
Ừ câu a)
Để B tối giản thì 7 phải không chia hết cho 2n - 3
=> n khác {2; -2; 5; 1}
Cho \(A=\dfrac{4n+1}{2n+3}\)
Tìm n để A đạt được giá trị nhỏ nhất? Giá trị lớn nhất?
\(A=\dfrac{4n+6-7}{2n+3}=2-\dfrac{7}{2n+3}\)
A lớn nhất khi 2n+3=-1
=>2n=-4
=>n=-2
A nhỏ nhất khi 2n+3=1
=>n=-1