Tìm x,y,z:
\(\frac{x-1}{2005}=\frac{3-y}{2006};x-y=4009\)
thks
\(\frac{x+y+2005}{z}=\frac{y+z-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\). tìm x,y,z
tìm x,y,z
\(\frac{x-1}{2005}=\frac{3-y}{2006}\)và x-y=4009
(x-1)/2005=(3-y)/2006
nên x/2006=y/-2003
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
x/2006=y/-2003=(x+y)/(2006+2003)=4009/4009=1
nên x=2006
y=-2003
z ở đâu ra đấy?
Tìm X,Y,Z biết:
\(\frac{x+y+2005}{z}=\frac{y+2-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
Áp dụng dãy tỉ số bằng nhau
Tìm x,y,z khi:
a)\(\frac{x}{7}=\frac{y}{3}\)và x-24=y
b)\(\frac{x-1}{2005}=\frac{3-y}{2006}\)và x-y=4009
a)Theo bài ra ta có:
\(\frac{x}{7}=\frac{y}{3}\)\(;\)\(x-24=y\Rightarrow x-y=24\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
\(\Rightarrow\begin{cases}\frac{x}{7}=4\Rightarrow x=4\cdot7=28\\\frac{y}{3}=4\Rightarrow y=4\cdot3=12\end{cases}\)
b)Theo bài ra ta có:
\(x-y=4009;\frac{x-1}{2005}=\frac{3-y}{2006}\)
Áp dụng tính chất dãy tỉ số bằng nhau là:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1-3-y}{2005-2006}=\frac{x-y-4}{-1}=\frac{4009-4}{-1}=-4005\)
\(\Rightarrow\begin{cases}\frac{x-1}{2005}=-4005\Rightarrow x-1=-8030025\Rightarrow x=-8030024\\\frac{3-y}{2006}=-4005\Rightarrow3-y=-8034030\Rightarrow y=8034033\end{cases}\)
tìm x,y,z khi:
\(\frac{x-1}{2005}\)=\(\frac{3-y}{2006}\)và x-y=4009
Ta có:\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{x-y+2}{4011}=\frac{4011}{4011}=1\)
\(\Rightarrow\frac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006\)
\(\Rightarrow\frac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003\)
a)\(\frac{x-1}{2005}=\frac{3-y}{2006}\)và x-y=4009
b)\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x-y-z=28
Tìm x,y,z biết
\(\frac{x+y+2005}{z}=\frac{y+z-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
Tìm x, y, z biết:
a) \(\frac{x-1}{2005}=\frac{3-y}{2006}\) và x - y = 4009
b) 3x = y; 5y = 4z và 6x + 7y + 8z = 456
c) \(\frac{x}{7}=\frac{y}{3}\) và x - 24 = y
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)
=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)
b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nahu ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)
=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)
c) Có: \(x-24=y\Rightarrow x-y=24\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
=> \(\begin{cases}x=42\\y=18\end{cases}\)
Giải phương trình:
a) \(\frac{\sqrt{x-2005}-1}{x-2005}+\frac{\sqrt{y-2006}-1}{y-2006}+\frac{\sqrt{z-2007}-1}{z-2007}=\frac{3}{7}\)
b) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)