GPT: \(\frac{1}{x+2}-\frac{2x}{x^2-4}=1\)
a) Gpt \(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\\ \)(1)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0\Rightarrow!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\left\{\begin{matrix}2x+1=0\\-x^2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-\frac{1}{2}\\x=0\end{matrix}\right.\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[2\left(x+\frac{1}{2}\right)\left(x^2+1\right)\right]\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)}=\left(x+\frac{1}{2}\right)\left(x^2+1\right)\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}+1\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-1-x^2+1\right)=0\)
\(\Leftrightarrow-x^2\left(x+\frac{1}{2}\right)=0\)\(\Leftrightarrow\left[\begin{matrix}-x^2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
gpt. a , \(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\) b,\(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)
a) Ta có:
\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(\frac{\Leftrightarrow4}{x}-x+\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}=0\left(1\right)\)
Dật \(u=\sqrt{x-\frac{1}{x}};v=\sqrt{2x-\frac{5}{x}}\left(u,v\ge0\right)\Rightarrow u^2-v^2=\frac{4}{x}-x\)
Do đó (1) trở thành: \(u^2-v^2+u-v=0\Rightarrow u=v\)
Đến đây bạn tự giải nhé
Gpt: \(\sqrt{\frac{1-2x}{x}}=\frac{3x+x^2}{x^2+1}\)
\(ĐKXĐ:\hept{\begin{cases}\frac{1-2x}{x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(1-2x\right)\ge0\\x\ne0\end{cases}\Leftrightarrow}}0< x\le\frac{1}{2}\)
Do \(x\ne0\)nên pt đã cho trở thành
\(\sqrt{\frac{1}{x}-2}=\frac{\frac{3}{x}+1}{1+\frac{1}{x^2}}\)
Đặt \(\frac{1}{x}=a\)kết hợp ĐKXĐ được \(a>2\)
Thu được pt \(\sqrt{a-2}=\frac{3a+1}{1+a^2}\)
\(\Leftrightarrow\left(1+a^2\right)\sqrt{a-2}=3a+1\)
\(\Leftrightarrow\left(1+a^2\right)\left(\sqrt{a-2}-1\right)=3a+1-a^2-1\)
\(\Leftrightarrow\left(a^2+1\right).\frac{a-3}{\sqrt{a-2}+1}=-a^2+3a\)
\(\Leftrightarrow\left(a-3\right)\left[\frac{a^2+1}{\sqrt{a-2}+1}+a\right]=0\)
Vì a > 2 nên [...] > 0
Nên a = 3
<=> x = 1/3
GPT: \(\frac{2}{x^2-3x+12}+\frac{6}{x^2+2x+12}=\frac{1}{x}\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{x^2-3x+12}+\frac{6x}{x^2+2x+12}=1\)
\(\Leftrightarrow\frac{2}{x+\frac{12}{x}-3}+\frac{6}{x+\frac{12}{x}+2}=1\)
Đặt \(x+\frac{12}{x}-3=t\)
\(\Rightarrow\frac{2}{t}+\frac{6}{t+5}=1\Leftrightarrow2\left(t+5\right)+6t=t\left(t+5\right)\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{12}{x}-3=-2\\x+\frac{12}{x}-3=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+12=0\\x^2-8x+12=0\end{matrix}\right.\) (casio)
gpt:
\(x^4-2x^3+x=\sqrt{(x^2-x).2}\)
\(x(5x^3+2)-2(\sqrt{2x+1}-1)=0\)
\(\sqrt{x+\frac{3}{x}}=\frac{x^2-7}{2x+2}\)
c) Ta có:
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)
+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)
a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)
\(\Rightarrow a^4-2a^2=a\)
\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)
b/ \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-1\right)^2+5x^4=0\)
\(\Leftrightarrow x=0\)
GPT: \(\frac{2}{x^2-3x+12}+\frac{6}{x^2+2x+12}=\frac{1}{x}\)
\(pt\Leftrightarrow\frac{2x}{x^2-3x+12}+\frac{6x}{x^2+2x+12}=1\)
\(\Leftrightarrow\frac{2}{x-3+\frac{12}{x}}+\frac{6}{x+2+\frac{12}{x}}=1\)
Đặt \(x+\frac{12}{x}=t\)
Khi đó:
\(pt\Leftrightarrow\frac{2}{t-3}+\frac{6}{t+2}=1\Leftrightarrow2t+4+6t-18=t^2-t-6\)
\(\Leftrightarrow t^2-t-6=8t-14\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left(t-8\right)\left(t-1\right)=0\)
\(\Leftrightarrow x+\frac{12}{x}=8;x+\frac{12}{x}=1\)
Thôi,bí rồi
GPT: \(\frac{12x}{x^2+4x+2}-\frac{3x}{x^2+2x+2}=1\)
ĐKXĐ: \(x^2+4x+2\ne0\)
Nhận thấy \(x=0\) không phải nghiệm, phương trình đã cho tương đương:
\(\frac{12}{x+\frac{2}{x}+4}-\frac{3}{x+\frac{2}{x}+2}=1\)
Đặt \(x+\frac{2}{x}+2=a\Rightarrow x+\frac{2}{x}+4=a+2\) ta được:
\(\frac{12}{a+2}-\frac{3}{a}=1\Leftrightarrow12a-3\left(a+2\right)=a\left(a+2\right)\)
\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{2}{x}+2=1\\x+\frac{2}{x}+2=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-4x+2=0\end{matrix}\right.\) \(\Rightarrow...\)
gpt : a) \(\frac{5x}{\sqrt{4-x^2}}+\frac{8}{x^2}+\frac{2x}{4-x^2}+\frac{5\sqrt{4-x^2}}{x}+4=0\)
b) \(\frac{2x}{\sqrt{8x^2+25}}+\frac{125}{x^2}-14=0\)
c) \(\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
d) \(\sqrt{x^2-x+6}+\frac{4}{x-1}=x^2+x\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
\(c,\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x^2-3x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow x=1\)
Hoặc là: \(\Rightarrow\left(x+2\right)\left(x-1\right)\sqrt{3x-2}-2x\left(x-2\right)=0\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Còn cần nữa không, hôm bữa chị giải ra câu a mà quên béng mất, mấy hôm lại bận làm thuyết trình Tiếng Anh nên bỏ dở.
Giờ mà cần chị cũng chỉ làm được câu a thôi '-'
1. gpt : \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\sqrt{1+\frac{2x+1}{x^2+2}}+x=0\)
2. \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z\le\frac{3}{2}\end{matrix}\right.\) Tìm min \(Q=\frac{x}{y^2z}+\frac{y}{z^2x}+\frac{z}{x^2y}+\frac{x^5}{y}+\frac{y^5}{z}+\frac{z^5}{x}\)
a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)
\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)
\(\Rightarrow x=-\frac{1}{2}\)
b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)
\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)
\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)
\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)
"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,
Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma
giúp em vs ạ! Cần trước 5h chiều nay ạ
Thanks nhiều