Cho ba số a,b,c thõa mãn abc=1. Tính tổng
B= 2016/1+a+ab + 2016/1+b+bc + 2016/1+c+ca
Cho a, b, c thõa mãn : a.b.c = 2016
Tính : \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+abc}+\frac{b}{bc+b+2016}+\frac{bc}{abc+bc+b}\)
\(A=\frac{2016a}{a\left(b+2016+bc\right)}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016}{b+2016+bc}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016+b+bc}{2016+b+bc}=1\)
Thay : 2016 = abc
ta có :
\(A=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(A=\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(A=\frac{ac+c+1}{ac+c+1}\)
\(A=1\)
vậy \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}=1\)
Chúc bạn học tốt !
cho a,b,c>0 thõa mãn abc=1. CM 1/(a^2016+b^2016+1)+1/(b^2016+c^2016+1)+1(c^2016+a^2016+1)≤1
cho a,b,c>0 thõa mãn abc=1. CM \(\frac{1}{a^{2016}+b^{2016}+1}+\frac{1}{b^{2016}+c^{2016}+1}+\frac{1}{c^{2016}+a^{2016}+1}\le1\)
e ơi e nên tải tài liệu của võ quốc bá cẩn đi
Cho 3 số a,b,c khác 0thỏa mãn ab/a+b=bc/b+c=ca/c+a
Tính P=(ab+bc+ca)^1008/(a^2016+b^2016+c^2016)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\)\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ac}+\frac{a}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
Ta có: +) \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\)\(\Rightarrow\frac{1}{a}=\frac{1}{c}\)\(\Rightarrow a=c\) (1)
+) \(\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)\(\Rightarrow\frac{1}{b}=\frac{1}{a}\)\(\Rightarrow b=a\) (2)
Từ (1) và (2) => a = b = c
Lại có: \(P=\frac{\left(ab+bc+ac\right)^{1008}}{a^{2016}+b^{2016}+c^{2016}}=\frac{\left(a.a+a.a+a.a\right)^{1008}}{a^{2016}+a^{2016}+a^{2016}}=\frac{\left(a^2+a^2+a^2\right)^{1008}}{3.a^{2016}}\)
\(P=\frac{\left(3a^2\right)^{1008}}{3.a^{2016}}=\frac{3^{1008}.a^{2016}}{3.a^{2016}}=3^{1007}\)
Cho các số a, b, c thỏa mãn abc = 2016
Tính A = \(\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
cho a,b,c khác 0 thỏa mãn ab/(a+b) = bc/(b+c)= ca/(c+a). tính: ( ab+bc+ca) mũ 1008/a mũ 2016+ b mũ 2016 + c mũ 2016
Cho a,b,c thỏa mãn ab+bc+ca=0, a+b+c=0, tính P=(a+1)^1945+b^1975+(c-1)^2016
\(ab+bc+ca=0\Rightarrow2ab+2bc+2ca=0\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
Mà \(2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=0\)
Mà \(\hept{\begin{cases}a^2\ge0\\b^2\ge0\\c^2\ge0\end{cases}}\)
\(\Rightarrow a^2=b^2=c^2=0\)
\(\Rightarrow a=b=c=0\)
\(\Rightarrow P=1^{1945}+0^{1975}+\left(-1\right)^{2016}=2\)
Vậy ...
từ a+b+c = 0 => (a+b+c)2=0 => a2+b2+c2+2ab+2bc+2ac=0
từ ab+bc+ac = 0 => a2+b2+c2 =0
=> a=b=c=0
=>P= 3
Cho 3 số a,b,c biết ab/(a+b)=bc/(b+c)=ca/(c+a) tính P = (ab+bc+ca)^1008/(a^2016+b^2016+c^2016)
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính \(P=\frac{\left(ab+bc+ca\right)^{1008}}{a^{2016}+b^{2016}+c^{2016}}\)
cho a,b,c>0 thỏa mãn abc=1.chứng minh \(\frac{1}{a^{2016}+b^{2016}+1}+\frac{1}{b^{2016}+c^{2016}+1}+\frac{1}{c^{2016}+a^{2016}+1}\le1\)