tìm số dư khi chia 2n2+3n+3 cho n+2
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Bài 5:Tìm số tự nhiên a nhỏ nhất sao cho a chia 5 dư 3,chia 7 dư 4
Bài 6:Một số chia 7 dư 3,chia 17 dư 12,chia 23 dư 7.Hỏi số đó chia cho 2737 dư bao nhiêu?
Bài 7:Tìm số tự nhiên n biết khi chia n cho 147 và 193 có số dư lần lượt là 17 và 11.
Bài 11:a,Tìm các số nguyên x sao cho (4x-3) chia hết cho (x-2)
b,Tìm n biết 5n+7 chia hết cho 3n+2
c,Tìm n thuộc Z,biết 3n+2 chia hết cho n-1
HELP ME!!!!!!!!!!!!!!!!!!!giải rõ ra nhé
lì xì tết thì phải vừa nhiều vừa khó chứ
duyệt đi
Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ
Tìm số dư khi chia 2\(^{3n+2}\) +2015 cho 7 với mọi n thuộc N
Ta chứng minh \(2^{3n+2}\equiv4\left(mod7\right)\) với mọi \(n\inℕ\).
Với \(n=0\) thì \(2^{3n+2}\equiv4\left(mod7\right)\), luôn đúng.
Giả sử khẳng định đúng đến \(n=k\), khi đó \(2^{3k+2}\equiv4\left(mod7\right)\). Ta cần chứng minh khẳng định đúng với \(n=k+1\). Thật vậy, ta có \(2^{3\left(k+1\right)+2}=2^{3k+5}=8.2^{3k+2}\). Do \(2^{3k+2}\equiv4\left(mod7\right)\) nên đặt \(2^{3k+2}=7a+4\left(a\inℕ\right)\). Từ đó \(2^{3\left(k+1\right)+2}=8.2^{3k+2}=8\left(7a+4\right)=56a+32\). Do \(56a\equiv0\left(mo\text{d}7\right)\) và \(32\equiv4\left(mod7\right)\), suy ra \(56a+32\equiv4\left(mod7\right)\). Do vậy, \(2^{3\left(k+1\right)+2}\equiv4\left(mod7\right)\), vậy khẳng định đúng với \(n=k+1\) \(\Rightarrow2^{3n+2}\equiv4\left(mod7\right),\forall n\inℕ\). Lại có \(2015\equiv-1\left(mod7\right)\) nên \(2^{3n+2}+2015\equiv3\left(mod7\right),\forall n\inℕ\).
Tìm nÎZ để giá trị của biểu thức n3 -2n2 + 3n + 3 chia hết cho giá trị của biểu thức n-1
b) Tìm a để đa thức x4 + 6x3 + 7x2 - 6x + a chia hết cho đa thức x2 + 3x - 1
\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)
Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)
biết rằng khi chia 3n cho 7 thi được số dư là 5.Tìm số dư khi chia n cho 7
các thánh ơi giúp em với, em cho
dư 4
Nếu làm trắc nghiệm thì thế 4 vào
Bài 1:Tìm số dư khi chia mỗi số sau cho 9,cho 3:
8260, 1725 ,7364, 1015
Bài 2: Tìm chữ số tự nhiên n để 3n+29 chia hết cho n+3
Bài 2:
\(3n+29⋮n+3\)
\(\Leftrightarrow3n+9+20⋮n+3\)
\(\Leftrightarrow3\left(n+3\right)+20⋮n+3\)
Vì \(3\left(n+3\right)⋮n+3\)nên \(20⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
\(\Leftrightarrow n\in\left\{-2;-4;-1;-5;1;-7;2;-8;7;-13;17;-23\right\}\)
ta thấy 8+2+6+0=16;1+7+2+5=15;7+3+6+4=20;1+0+0+0+..+0=1
=>8260/3 dư 1 ; 1725/3 dư 0 ; 7364/3 dư 2 ;10^15/3 dư 1
2.3n+29 chia hết cho n+3
n+3 chia hết cho n+3 =>3n+9 chia hết cho n+3
=>3x+29-3x-9=20 chia hết cho n+3
=>n+3 thuộc ước của 20
có bảng( tự làm)VD
n+3 | 2 |
n | -1 |
a,tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1 chia cho 4 dư 2 chia cho 5 dư 3 chia cho 6 dư 4 và chia hết cho 11 ?
b, Tìm các giá trị nguyên của n để phân số A=3n+2/n-1 có giá trị là số nguyên ?
a) Tìm số nguyên n sao cho 2n2-n+2 chia hết cho 2n+1
b) Tìm a và b sao cho f(x)=x3+ax+b chia hết cho x+1 dư 7 và chia cho x-3 dư -5
Câu b : Bạn có nhầm đề không vậy ?
1, Tính: 30+31+32+.....+3100
2, Tìm x: 2+ 4+ 6+ 8+....+ 2x= 210
3, CMR: các tổng sau là hợp số
a, abcabc+ 22
b, abcabc+ 39
4, Tìm số tự nhiên sao cho: n2+ 3n+ n+ 3 là số nguyên tố
5, Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia 4 dư 1 và chia 19 dư 11
1. Ta có: A = 30 + 31 + 32 + ... + 3100
3A = 3.(1 + 3 + 32 + ... + 3100)
3A = 3 + 32 + 33 + ... + 3101
3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
Vậy ...
Baif1 :
đặt \(A=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
1,
Đặt A = 30 + 31 + 32 + ...+3100
3A= 3 + 32 + 33 + ... + 3101
=> 3A - A =(3 + 32 + ... +3101) - (1 + 3 + 32 + ...+ 3100)
2A = 3101 - 1
=> A= 3101-1/2
2, 2+4+6+8+...+ 2x=210
= 1.2 + 2.2 + 2.3 + 2.4 + ... + 2x=210
= 2. ( 1+2+3+4+...+x)=210
= 2.[x.(x+1):2]=210
= x.(x+1):2=105
= x .(x+1)=210
hay x.(x+1)=14.(14+1)
Vậy x=14