Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bangtan Bàngtán Bất Bình...
Xem chi tiết
KCLH Kedokatoji
21 tháng 6 2020 lúc 10:14

\(^{x^2+y^2+z^2-xy-yz-xz\ge0}\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(luôn đúng)

Dấu "=" khi x=y=z

Khách vãng lai đã xóa
Trương Quỳnh Hoa
Xem chi tiết
quoc trananh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2020 lúc 9:26

Ta có: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-\left[3xy\left(x+y+z\right)\right]\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)(đpcm)

Lê Trần Nam Khánh
Xem chi tiết
Akai Haruma
11 tháng 9 2023 lúc 19:07

Lời giải:
Áp dụng BĐT Cô-si:

$(x^2+y^2+z^2)(xy+yz+xz)^2=(x^2+y^2+z^2)(xy+yz+xz)(xy+yz+xz)$

$\leq \left(\frac{x^2+y^2+z^2+xy+yz+xz+xy+yz+xz}{3}\right)^3$

$=\frac{(x+y+z)^6}{27}=\frac{3^6}{27}=27$

Vậy max của biểu thức là $27$ khi $a=b=c=1$

Bùi Đức Anh
Xem chi tiết
Akai Haruma
26 tháng 1 2021 lúc 13:30

Bạn tham khảo lời giải tại đây:

cho các số thực dưong x,y,z thỏa mãn : x2 y2 z2=3chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}} \dfrac{y}{\sqrt[3]{zx}} \df... - Hoc24

Akai Haruma
26 tháng 1 2021 lúc 13:35

Cách khác:

Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:

\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)

\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)

Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)

Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$

Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$

BĐT $(*)$ trở thành:

$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$

$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$

$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$

Điều này đúng với mọi $\sqrt{3}< a\leq 3$

Do đó BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

Vũ Hoài Thu
Xem chi tiết
Akai Haruma
29 tháng 5 2023 lúc 18:26

Đề lỗi công thức rồi. Bạn xem lại.

hà anh
Xem chi tiết
hà anh
Xem chi tiết
Linh An Trần
Xem chi tiết