Giải pt tìm nghiệm nguyên: \(x^2+x=y^4+y^3+y^2+y\)
giải pt nghiệm nguyên dương sau :3(x^4+y^4+x^2+y^2+2)=2(x^2-x+1)(y^2-y+1)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
Giải PT nghiệm nguyên (x^2+y)(x+y^2)=(x+y)^3 (x,y thuộc N*)
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)
\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)
TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\)
TH2: \(xy-3x-3y+1=0\)
\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)
Từ đó ta có bảng:
\(x-3\) | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
\(y-3\) | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
\(x\) | 4 | 11 | 5 | 7 | 2 | -5 | 1 | -1 |
\(y\) | 11 | 4 | 7 | 5 | -5 | 2 | -1 | 1 |
Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)
Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:
\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\); \(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)
giải phương trình nghiệm nguyên
a) y(x-1)=x2+2
b) x2-(y+2)x+3-y=0
giải pt nghiệm nguyên:
4(x+y)=3xy-8
x(x-2)=33-9y2
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
Giải pt nghiệm nguyên
4(x-3)y2+2(x2-4x+3)y+x2-5x=6
Giải pt nghiệm nguyên:
\(x^2+y^3=y^6\)
\(4x^2=4y^6-4y^3\)
\(\Leftrightarrow4y^6-4y^3+1-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1\right)^2-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1-2x\right)\left(2y^3-1+2x\right)=1\)
Giải bằng 3 cách:
Tìm nghiệm nguyên của PT: x2 + xy + y2 = x2y2
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
5 cách ở đây luôn nhá(của mình với anh Incursion_03):Câu hỏi của Vinh Lê Thành - Toán lớp 8
giải pt nghiệm nguyên ;
\(^{x^2}\)+x=\(^{y^4}\)+y\(^3\)+y\(^2\)+y
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha