Xy - x = 7
Câu 2: (1,5 điểm) Hãy thu gọn các đơn thức,đa thức sau:
a) A = - ( 6 . 8 x x 7 6 3 y y ) ( 3 )
b) B xy xy xy xy = - - + + + 7 2 8 5 6
Giải hệ phương trình \(\left\{{}\begin{matrix}x-y+xy=7\\x^2-xy+y^2=7\end{matrix}\right.\)
Trừ 2 vế của HPT
\(\Leftrightarrow x^2-xy+y^2-x+y-xy=0\\ \Leftrightarrow x^2+y^2-x+y-2xy=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)
Với \(x=y\Leftrightarrow x-x+x^2=7\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\Rightarrow y=\sqrt{7}\\x=-\sqrt{7}\Rightarrow y=-\sqrt{7}\end{matrix}\right.\)
Với \(x=y+1\Leftrightarrow y+1-y+y\left(y+1\right)=7\)
\(\Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)
Vậy ...
x^2 - xy + y^2 = x - y + xy
<=> x^2 - 2xy + y^2 - (x - y) = 0
<=> (x - y)^2 - (x - y) = 0
<=> (x - y)(x - y - 1) = 0
TH1: x - y = 0 <=> x = y
x^2 - xy + y^2 = 7
<=> x^2 = 7 <=> x = sqrt(7) hoặc x = -sqrt(7)
Với x = sqrt(7) thì y = sqrt(7)
Với x = -sqrt(7) thì y = -sqrt(7)
TH2: x - y - 1 = 0 <=> x = y + 1
x - y + xy = 7
<=> (y + 1)y + 1 = 7
<=> y^2 + y - 6 = 0
<=> (y - 2)(y + 3) = 0
<=> y = 2 hoặc y = -3
Với y = 2 thì x = 2 + 1 = 3
Với y = -3 thì x = -3 + 1 = -2
\(\left\{{}\begin{matrix}x-y+xy=7\\x^2-xy+y^2=7\end{matrix}\right.\Leftrightarrow x-y+xy-x^2+xy-y^2=0\\ \Leftrightarrow x^2-2xy+y^2-x+y=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)
Với x=y thế vào pt(1) ta được:
\(x-y+xy=7\\ \Leftrightarrow y-y+y.y=7\\ \Leftrightarrow y^2=7\\ \Leftrightarrow\left[{}\begin{matrix}y=\sqrt{7}\Rightarrow x=\sqrt{7}\\y=\sqrt{7}\Rightarrow x=\sqrt{7}\end{matrix}\right.\)
Với x=y-1 thế vào pt(1) ta được:
\(y-1-y+\left(y+1\right).y=7\\ \Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
Tìm cặp số nguyên (x,y) sao cho :
A) xy + 3x - 2y - 7 = 0
B) xy - x + 5y - 7 = 0
C ) x + 2y = xy + 2
ĐKXĐ : x,y ∈ Z
a) xy + 3x - 2y - 7 = 0
<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0
<=> ( y + 3 )( x - 2 ) = 1
Ta có bảng sau :
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | 1 |
y | -2 | -4 |
Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }
b) xy - x + 5y - 7 = 0
<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0
<=> ( y - 1 )( x + 5 ) = 2
Ta có bảng sau :
x+5 | 1 | -1 | 2 | -2 |
y-1 | 2 | -2 | 1 | -1 |
x | -4 | -6 | -3 | -7 |
y | 3 | -1 | 2 | 0 |
Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }
c) x + 2y = xy + 2
<=> x + 2y - xy - 2 = 0
<=> x( 1 - y ) - 2( 1 - y ) = 0
<=> ( x - 2 )( 1 - y ) = 0
<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy ( x ; y ) = ( 2 ; 1 )
à cho mình sửa ý c) một chút nhé
( x - 2 )( 1 - y ) = 0
Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R
Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R
a)xy(y-7)+7y(1+x) tại x=-6;y=1
b)xy-7x+y-7 tại x=9;y=10
c)xy(y-2)+2x(1+x) tại x=-1;y=2
a) \(xy\left(y-7\right)+7y\left(1+x\right)\)
\(=xy^2-7xy+7y+7xy=xy^2+7y\)
Thay vào ta được:
\(=\left(-6\right).1^2+7.1=\left(-6\right)+7=1\)
b) \(xy-7x+y-7\)
\(=xy+y-7x-7=y\left(x+1\right)-7\left(x+1\right)=\left(y-7\right)\left(x+1\right)\)
Thay vào ta được:
\(=\left(10-7\right)\left(9+1\right)=3.10=30\)
c) \(xy\left(y-2\right)+2x\left(1+x\right)\)
Thay vào ta được:
\(\left(-1\right).2\left(2-2\right)+2\left(-1\right)[1+\left(-1\right)]=0+0=0\)
a,(5x-1)(y+1)=4
b,xy-7y+5x=0(với x lớn hơn hoặc bằng 3)
c,xy-x-3y=8
d,(2x-1)(4y+2)=-30
e,(x-7)(xy+1)=7
giúp mình với!!!
** Bổ sung điều kiện $x,y$ là số nguyên.
a/
$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:
TH1: $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại)
TH2: $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$
TH3: $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại)
TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)
TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$
TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)
Vậy......
b/
$xy-7y+5x=0$
$y(x-7)+5(x-7)=-35$
$(x-7)(y+5)=-35$
Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.
Mà $x\geq 3\Rightarrow x-7\geq -4$
$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$
Nếu $x-7=-1\Rightarrow y+5=35$
$\Rightarrow x=6; y=30$
Nếu $x-7=1\Rightarrow y+5=-35$
$\Rightarrow x=8; y=-40$
Nếu $x-7=5\Rightarrow y+5=-7$
$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$
$\Rightarrow x=14; y=-10$
Nếu $x-7=35; y+5=-1$
$\Rightarrow x=42; y=-6$
c/
$xy-x-3y=8$
$\Rightarrow (xy-x)-3y=8$
$\Rightarrow x(y-1)-3(y-1)=11$
$\Rightarrow (y-1)(x-3)=11$
Do $x,y$ nguyên nên $x-3, y-1$ cũng là số nguyên. Mà $(x-3)(y-1)=11$ nên ta có các TH sau:
TH1: $x-3=1, y-1=11\Rightarrow x=4; y=12$
TH2: $x-3=-1, y-1=-11\Rightarrow x=2; y=-10$
TH3: $x-3=11, y-1=1\Rightarrow x=14; y=2$
TH4: $x-3=-11, y-1=-1\Rightarrow x=-8; y=0$
a)y(x-2)+3x-6=2 b)xy+x+y+3=0
c)xy+3x-2y-7=0 d)xy-x+5y-7=0
làm nhanh hô mình ah
6)2xy+x=6y+8
7)xy+12=x+y
8)x^2+xy-x-y=0
9)xy^2-xy+y-3=0
10)xy+7x-2y-14=0
d, \(2xy^2+x^2y^4+7\)
\(=2xy^2+x^2y^4+1-1+7\)
\(=\left(xy^2+1\right)^2+6\)
Vì \(\left(xy^2+1\right)^2\)≥0 nên \(\left(xy^2+1\right)^2+6\) ≥ 6
Dấu "=" xảy ra ⇔ \(xy^2+1=0\)
⇔ \(xy^2=-1\)
Vậy GTNN của đa thức là 6 tại \(xy^2\)= -1
Tìm số nguyên x, y biết:
7) xy + y + x + 1 = 5
8) xy - y + x - 1 = 7
\(xy+y+x+1=5\)
\(\Leftrightarrow y\left(x+1\right)+\left(x+1\right)=5\)
\(\Leftrightarrow\left(y+1\right)\left(x+1\right)=5\)
=> y + 1 và x + 1 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng:
y+1 | -5 | 5 | -1 | 1 |
x+1 | -1 | 1 | -5 | 5 |
y | -6 | 4 | -2 | 0 |
x | -2 | 0 | -6 | 4 |
Vậy các cặp (x;y) là (-2;-6) ; (0;4) ; (-6;-2) ; (4;0)
\(xy-y+x-1=7\)
\(\Leftrightarrow y\left(x-1\right)+\left(x-1\right)=7\)
\(\Leftrightarrow\left(y+1\right)\left(x-1\right)=7\)
=> y + 1 và x - 1 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng:
y+1 | -7 | 7 | -1 | 1 |
x-1 | -1 | 1 | -7 | 7 |
y | -8 | 6 | -2 | 0 |
x | 0 | 2 | -6 | 8 |
Vậy các cặp (x;y) là (0;-8) ; (2;6) ; (-6;-2) ; (8;0)
a, \(x.y+y+x+1=5\Leftrightarrow x\left(y+1\right)+x+1=5\)
\(\Leftrightarrow x\left(y+1\right)+x=4\Leftrightarrow x\left(y+2\right)=4\)
\(\Rightarrow x;y+2\inƯ\left(4\right)\Rightarrow x;y+2\in\left\{\pm1;\pm2;\pm4\right\}\)
x | 1 | 2 | 4 | -1 | -2 | -4 |
y + 2 | 4 | 2 | 1 | -4 | -2 | -1 |
y | 2 | 0 | -1 | -6 | -4 | -3 |
Vậy các cặp số nguyên (x;y) thỏa mãn là (1;2);(2;0);(4;-1);(-1;-6);(-2;-4);(-4;-3)
b, \(x.y-y+x-1=7\Leftrightarrow x\left(y-1\right)+x-1=7\)
\(\Leftrightarrow x\left(y-1\right)+x=8\Leftrightarrow x.y=8\)
\(\Rightarrow x;y\inƯ\left(8\right)\Rightarrow x;y\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Vậy ...