tính bằng cách thuận tiện nhất
\(\dfrac{17}{20}x\dfrac{27}{13}+\dfrac{27}{13}x\dfrac{3}{20}\)
Tính bằng cách thuận tiện.
\(\dfrac{4}{27}+\dfrac{5}{9}+\dfrac{13}{9}-2\)
\(\dfrac{4}{27}+\dfrac{5}{9}+\dfrac{13}{9}-2\\ =\dfrac{4}{27}+\dfrac{18}{9}-2\\ =\dfrac{4}{27}+\dfrac{18\times3}{9\times3}-\dfrac{2\times27}{27}\\ =\dfrac{4}{27}+\dfrac{54}{27}-\dfrac{54}{27}\\ =\dfrac{4}{27}\)
Tính bằng cách thuận tiện nhất
\(\dfrac{13}{18}\) x \(\dfrac{9}{26}\) x \(\dfrac{2}{3}\) =
\(\dfrac{44}{15}\) x \(\dfrac{5}{22}\) x \(\dfrac{3}{2}\) =
a: =13/26*9/18*2/3=2/3*1/4=2/12=1/6
b: =44/22*5/15*3/2=2*1/3*3/2=2*1/2=1
tính bằng cách thuận tiện nhất a, \(\dfrac{5}{13}\)x\(\dfrac{4}{15}\)x13= b, (\(\dfrac{3}{7}\)+\(\dfrac{5}{2}\))x\(\dfrac{7}{5}\)= c, \(\dfrac{1}{5}\)x\(\dfrac{11}{18}\)+\(\dfrac{11}{18}\)x\(\dfrac{3}{5}\)=
\(a,\dfrac{5}{13}\times\dfrac{4}{15}\times13=\dfrac{5\times4\times13}{13\times5\times3}=\dfrac{4}{3}\\ b,\left(\dfrac{3}{7}+\dfrac{5}{2}\right)\times\dfrac{7}{5}=\dfrac{3}{7}\times\dfrac{7}{5}+\dfrac{5}{2}\times\dfrac{7}{5}=\dfrac{3}{5}+\dfrac{7}{2}=\dfrac{6}{10}+\dfrac{35}{10}=\dfrac{41}{10}\\ c,\dfrac{1}{5}\times\dfrac{11}{18}+\dfrac{11}{18}\times\dfrac{3}{5}=\dfrac{11}{18}\times\left(\dfrac{1}{5}+\dfrac{3}{5}\right)=\dfrac{11}{18}\times\dfrac{4}{5}=\dfrac{22}{45}\)
tính bằng cách thuận tiện nhất a, \(\dfrac{2}{9}\)+\(\dfrac{1}{6}\)+\(\dfrac{3}{5}\) b, \(\dfrac{9}{13}\)+\(\dfrac{4}{13}\)+\(\dfrac{2}{3}\)
a: =20/90+15/90+54/90=89/90
b: =(9/13+4/13)+2/3=1+2/3=5/3
Tính bằng cách thuận tiện nhất.
a) \(\dfrac{16}{15}+\dfrac{7}{15}+\dfrac{4}{15}\) b) \(\dfrac{5}{17}+\dfrac{7}{17}+\dfrac{13}{17}\)
a) \(\dfrac{16}{15}+\dfrac{7}{15}+\dfrac{4}{15}=\left(\dfrac{16}{15}+\dfrac{4}{15}\right)+\dfrac{7}{15}=\dfrac{20}{15}+\dfrac{7}{15}=\dfrac{27}{15}\)
b) \(\dfrac{5}{17}+\dfrac{7}{17}+\dfrac{13}{17}=\dfrac{5}{17}+\left(\dfrac{7}{17}+\dfrac{13}{17}\right)=\dfrac{5}{17}+\dfrac{20}{17}=\dfrac{25}{17}\)
Tính bằng cách thuận tiện:
(1-\(\dfrac{3}{4}\)) x (1 - \(\dfrac{3}{7}\)) x (1 - \(\dfrac{3}{10}\)) x (1 - \(\dfrac{3}{13}\)) x ....... x (1 - \(\dfrac{3}{97}\)) x (1 - \(\dfrac{3}{100}\))
Giải:
\(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
bài 3 thực hiện phép tính
a\(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
b\(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
c\(\left(\dfrac{13}{5}+\dfrac{7}{16}\right)+\left(\dfrac{-15}{16}+\dfrac{6}{15}\right)\) d \(\left(6-2\dfrac{4}{5}\right).3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\)
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
Tính thuận tiện A=\(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}\)
A = \(\dfrac{3}{2}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{12}\) - \(\dfrac{9}{20}\) + \(\dfrac{11}{30}\) - \(\dfrac{13}{42}\) + \(\dfrac{15}{56}\) - \(\dfrac{17}{72}\)
A = (1 + \(\dfrac{1}{2}\)) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)) - (\(\dfrac{1}{4}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\) + \(\dfrac{1}{6}\)) - (\(\dfrac{1}{6}\) + \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7}\) + \(\dfrac{1}{8}\)) - (\(\dfrac{1}{8}\) + \(\dfrac{1}{9}\))
A = 1 + \(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)
A = 1 - \(\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
\(A=\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)-\left(\dfrac{1}{8}+\dfrac{1}{9}\right)\)
\(A=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}-\dfrac{1}{9}\)
\(A=1+\dfrac{1}{9}=\dfrac{10}{9}\)
Tính bằng cách thuận tiện
\(\dfrac{7}{13}\) + \(\dfrac{5}{9}\) + \(\dfrac{6}{13}\) + \(\dfrac{5}{9}\)
`7/13+5/9+6/13+5/9`
`=(7/13+6/13)+(5/9+5/9)`
`=13/13+10/9`
`=1+10/9`
`=9/9+10/9`
`=19/9`