Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thế Dũng
Xem chi tiết
Mạc Hoa Nhi
Xem chi tiết
Trang Nguyễn
19 tháng 5 2021 lúc 10:22

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

Nguyễn Lê Phước Thịnh
19 tháng 5 2021 lúc 10:53

a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)

\(\Leftrightarrow8x-2+3⋮4x-1\)

mà \(8x-2⋮4x-1\)

nên \(3⋮4x-1\)

\(\Leftrightarrow4x-1\inƯ\left(3\right)\)

\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)

\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

Vậy: \(x\in\left\{0;1\right\}\)

Nguyễn Xuân Trường
Xem chi tiết
Darlingg🥝
27 tháng 11 2021 lúc 20:29

bạn ktra lại đề ở chỗ 2/3/-x 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2018 lúc 12:00

Tìm được A =  24 5 và B =  - 6 x - 4  với x > 0 và x ≠ 4 ta tìm được 0 < x < 1

Ta có M =  - 1 + 2 x ∈ Z =>  x ∈ Ư(2) từ đó tìm được x=1

Trần Uyển Bình
Xem chi tiết
Tiến Dũng Đinh
12 tháng 3 2017 lúc 17:51

giá trị dương hay giá trị nguyên dương vậy bạn? hai loại khác nhau nhé

Đinh Đức Hùng
12 tháng 3 2017 lúc 17:56

Để \(M=\frac{7-x}{x-3}\) có giá trị dương <=> 7 - x và x - 3 cùng dấu

TH1 : \(\hept{\begin{cases}7-x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x< 3\end{cases}}}\) (loại)

TH2 : \(\hept{\begin{cases}7-x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}\Rightarrow}x=4;5;6}\) (nhận)

Vậy \(x=4;5;6\)

khgdg
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 18:23

\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{0;-2;2;-4\right\}\)

nguyễn thế hùng
20 tháng 12 2021 lúc 18:24

⇔x+1∈{1;−1; 3 ;−3}⇔x+1∈{1 ;− 1 ; 3 ;−3}

hay x∈{0;−2; 2;−4}

Gumm
Xem chi tiết
pham trung thanh
3 tháng 11 2017 lúc 21:08

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

Gumm
4 tháng 11 2017 lúc 16:19

cách nhân ntn ạ 

pham trung thanh
5 tháng 11 2017 lúc 9:03

Quy đồng lên thôi 

Quandung Le
Xem chi tiết
Trần Thanh Phương
7 tháng 5 2019 lúc 21:19

Để biểu thức nguyên thì :

\(x+5⋮x^2+4\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)⋮x^2+4\)

\(\Leftrightarrow x^2-25⋮x^2+4\)

\(\Leftrightarrow x^2+4-29⋮x^2+4\)

Mà \(x^2+4⋮x^2+4\)

\(\Rightarrow-29⋮x^2+4\)

\(\Rightarrow x^2+4\inƯ\left(29\right)=\left\{1;29\right\}\)( vì \(x^2+4>0\))

Đến đây dễ rồi

Võ Ngọc Phương
Xem chi tiết
Akai Haruma
31 tháng 10 2023 lúc 13:24

Lời giải:

$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$

Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$

Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$

$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)