Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đồ ngốc ahihi
Xem chi tiết
Ngô Thị Kiều Uyên
Xem chi tiết
Kudo Shinichi
5 tháng 2 2022 lúc 9:39

undefined

Minh Hiếu
5 tháng 2 2022 lúc 9:41

\(T=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9+3^{10}+3^{11}+3^{12}\)

\(=3\left(1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)\)⋮3

Vậy ...

 

nhem
Xem chi tiết
De Thuong
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Lê Thị Trà My
Xem chi tiết
Banana Guy
Xem chi tiết
nguyễn tuấn thảo
2 tháng 9 2019 lúc 14:07

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

shitbo
2 tháng 9 2019 lúc 16:21

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

Nguyễn Tuấn Thảo
3 tháng 9 2019 lúc 14:59

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)

\(⋮7\)

vu trong luc
Xem chi tiết
Nguyễn Huy Hải
9 tháng 10 2015 lúc 18:04

A = 265720 chia hết cho 13 và 40 (đpcm)

Nguyễn Thảo Hân
Xem chi tiết
tthnew
24 tháng 7 2019 lúc 10:27

\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\) (đpcm)

Zore
24 tháng 7 2019 lúc 10:30

Lời giải:

Ta có:

\(A=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)\)

\(=(3.1+3.3+3.9)+(3^4.1+3^4.3+3^4.9)+(3^7.1+3^7.3+3^7.9)\)

\(=3.(1+3+9)+3^4\left(1+3+9\right)+3^7.\left(1+3+9\right)\)

\(=3.13+3^4.13+3^7.13\)

\(=13.(3+3^4+3^7)\) ⋮ 13 . Vậy: A ⋮ 13

hahaChúc bạn học tốt!hihaTick cho mình nhé!eoeo

kim chi hàn quốc
24 tháng 7 2019 lúc 10:34

A = 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39

⇒ A = (3 + 32 + 33) + (34 + 35 + 36) + (37 + 38 + 39)

⇒ A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + 37(1 + 3 + 32)

⇒ A = 3.13 + 34.13 + 37.13

⇒ A = 13(3 + 34 + 37) ⋮ 13

vậy A ⋮ 13

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
Aocuoi Huongngoc Lan
Xem chi tiết
Akai Haruma
25 tháng 11 2018 lúc 21:14

Lời giải:

Sửa đề. CMR:

\(T=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\vdots 13\)

----------------------------

Ta có:

\(T=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)\)

\(=(1+3+3^2)+3^3(1+3+3^2)+3^6(1+3+3^2)\)

\(=(1+3+3^2)(1+3^3+3^6)=13(1+3^3+3^6)\vdots 13\)

Vậy \(T\vdots 13\)