Tìm a,b thuộc Z thỏa
\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
a) Tìm hai số dương a, b thỏa mãn:
\(\frac{1}{a}\)- \(\frac{1}{b}=\frac{1}{a-b}\)
b) Tìm các số hữu tỉ x,y,z thỏa mãn điều kiện:
\(x+y=\frac{-7}{6};y+z=\frac{1}{4}\)Và \(x+z=\frac{1}{12}\)
a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)
(=) \(\left(b-a\right).\left(a-b\right)=ab\)
Vì a,b là 2 số dương
=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\)
Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b, Cộng vế với vế của 3 đẳng thức ta có :
\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)
(=) \(x+y+z=\frac{-5}{12}\)
Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)
Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)
Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)
Ta có: \(\hept{\begin{cases}x+y=-\frac{7}{6}\\y+z=\frac{1}{4}\\z+x=\frac{1}{12}\end{cases}}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
\(2.\left(x+y+z\right)=-\frac{5}{6}\)
\(\Rightarrow x+y+z=-\frac{5}{12}\)
\(\Rightarrow-\frac{7}{6}+z=-\frac{5}{12}\)
\(z=-\frac{5}{12}+\frac{7}{6}\)
\(z=-\frac{5}{12}+\frac{14}{12}\)
\(z=\frac{9}{12}\)
\(z=\frac{3}{4}\)
\(\Rightarrow x+\frac{3}{4}=\frac{1}{12}\)
\(x=\frac{1}{12}-\frac{3}{4}\)
\(x=-\frac{2}{3}\)
\(\Rightarrow-\frac{2}{3}+y=-\frac{7}{6}\)
\(y=-\frac{7}{6}+\frac{2}{3}\)
\(y=-\frac{1}{2}\)
Vậy \(\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{1}{2}\\z=\frac{3}{4}\end{cases}}\)
Tham khảo nhé~
Cho A=(\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+7}{x}\)
a, Rút gon A
b, Tìm x thuộc Z để A thuộc Z
a. \(A=\left[\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right].\frac{x+7}{x}\)
\(=\frac{x^2-1}{x^2-1}.\frac{x+7}{x}\)
\(=\frac{x+7}{x}\)
b. Để A \(\in\)Z thì \(\frac{x+7}{x}\in Z\)
=> x+7 chia hết cho x
Mà x chia hết cho x
=> 7 chia hết cho x
=> x \(\in\)Ư(7)={-7; -1; 1; 7}
Vậy x \(\in\){-7; -1; 1; 7} thì A \(\in\)Z.
Hoàng Bảo Ngọc trình bày cách làm cho tau với
11. tìm x,y thuộc Z thỏa mãn
a, xy-3x+2y=7
b, xy-5x+4y=9
c, 2xy+3x+7y=11
d, \(\frac{1}{x}+\frac{1}{y}=\frac{1}{11}\)(x;y thuộc N*)
1, Tìm x, y thuộc Z:
a, \(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+1}\)
b, \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
c, \(\frac{2}{y}-\frac{1}{x}=\frac{8}{x\cdot y}+1\)
2, Tìm a, b, c thuộc N:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{3}\)
Cho mình sửa lại đề câu 1b: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+1}\)
\(\frac{2x-7}{14}=\frac{1}{y+1}\)
\(TH1:\hept{\begin{cases}2x-7=7\\y+1=2\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x-7=-7\\y+1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
nhớ cho
Tìm a,b thuộc Z thoả
\(\frac{a}{7}\)-\(\frac{1}{2}\)=\(\frac{1}{b+1}\)
\(\frac{a}{7}-\frac{1}{b+1}=\frac{1}{2}\\ \Rightarrow\frac{a\left(b+1\right)}{7\left(b+1\right)}-\frac{7}{7\left(b+1\right)}=\frac{1}{2}\\ \Rightarrow\frac{ab+a}{7b+7}-\frac{7}{7b+7}=\frac{1}{2}\\ \Rightarrow\frac{ab+a-7}{7b+7}=\frac{1}{2}\\ \Rightarrow2\left(ab+a-7\right)=7b+7\)
=> 2ab+2a-7=7(b+1)
=> 2a(b+1)-7=7(b+1)
=> 2a(b+1)-7(b+1)=7
=> (b+1)(2a-7)=7
Tự xử tiếp nhé
cho a,b,c>0 , chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\) Áp dụng chứng minh các BĐT sau:
a,\(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b,cho \(x,y,z>0\) thỏa mãn x+y+z=1.Tìm GTLN của biểu thức\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
c,cho a,b,c>0 thỏa mãn\(a+b+c\le1\) Tìm GTNN của biểu thức\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
d,cho a,b,c >0 thỏa mãn a+b+c=1.Chứng minh\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge30\)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
c) Áp dụng bđt Cauchy Schwarz dạng Engel ta được:
\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2ab+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)
<=>\(P\ge\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)
Vậy Pmin=9 <=> a=b=c=1/3
a,Tìm a,b,c thuộc Z sao cho \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
b,Tìm a,b thuộc N biết \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
c,Tìm a,b,c thuộc N biết \(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)