Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kan
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Trà My
30 tháng 5 2017 lúc 23:18

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

Trà My
30 tháng 5 2017 lúc 22:56

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

Nguyễn Hoài Phương
Xem chi tiết
Mai Hiệp Đức
Xem chi tiết
Đặng Viết Thái
22 tháng 3 2019 lúc 20:01

x=y=z=t=2

hà phương uyên
22 tháng 3 2019 lúc 20:32

Vi vai tro cua x,y,z,t la binh dang nen gia su 

\(x\le y\le z\le t\)

=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}\le\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}\)

\(\Rightarrow1\le\frac{4}{x^2}\Rightarrow\)\(\frac{4}{4}\le\frac{4}{x^2}\)\(\Rightarrow x^2\le4\)\(\Rightarrow x^2\in\left\{1;4\right\}\)

\(+)\)\(x^2=1\)\(\Rightarrow\)\(\frac{1}{1}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=1\)\(\Rightarrow\)\(\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=0\)(loai )

+) \(x^2=4\Rightarrow\)\(\frac{1}{4}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=1\Rightarrow\)\(\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=\frac{3}{4}\le\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{y^2}\)  

                                                                                \(\Rightarrow\)\(\frac{3}{4}\le\frac{3}{y^2}\)\(\Rightarrow\)\(y^2\le4\)\(\Rightarrow\)\(y^2\in\left\{1;4\right\}\)

+) \(y^2=1\Rightarrow\)\(\frac{1}{1}+\frac{1}{z^2}+\frac{1}{t^2}=1\)\(\Rightarrow\)\(\frac{1}{z^2}+\frac{1}{t^2}=0\)(loai)

+) \(y^2=4\Rightarrow\)\(\frac{1}{4}+\frac{1}{z^2}+\frac{1}{t^2}=1\)\(\Rightarrow\)\(\frac{1}{z^2}+\frac{1}{t^2}=\frac{3}{4}\le\frac{1}{z^2}+\frac{1}{z^2}\)\(\Rightarrow\)\(\frac{3}{4}\le\frac{2}{z^2}\)

                  \(\Rightarrow\)\(\frac{6}{8}\le\frac{6}{3z^2}\)\(\Rightarrow\)\(3z^2\le8\)\(\Rightarrow\)\(z^2\le2\)\(\Rightarrow\)\(z^2=1\)

den day minh chiu

Ko cần bít
Xem chi tiết

https://olm.vn/hoi-dap/detail/88068471767.html

Trần baka
15 tháng 3 2019 lúc 0:10

Có : \(P=\Sigma\frac{x}{x+1}\)

\(\Rightarrow3-P=\Sigma\left(1-\frac{x}{x+1}\right)\)

                  \(=\Sigma\frac{1}{x+1}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3-P=\Sigma\frac{1}{x+1}\ge\frac{9}{x+y+z+3}=\frac{9}{4}\)

\(\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)

Dấu "=" khi x = y = z = 1/3

Taeyeon Kim
Xem chi tiết
cao van duc
8 tháng 2 2019 lúc 12:18

1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)

mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)

=>\(x+y+z=< 3\)

ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy  schwarz)

đoàn mạnh  trí
Xem chi tiết
nguyennamson
Xem chi tiết
nguyennamson
12 tháng 2 2020 lúc 22:59

có ai đó trả lời cho tôi không

Khách vãng lai đã xóa
galaxyLâm
Xem chi tiết
Xyz OLM
3 tháng 10 2020 lúc 20:50

Ta có \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z+x+z+x+y-2-3+5}\)

                                                                                                            \(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=> x + y + z = 1/2

Lại có \(\hept{\begin{cases}\frac{x}{y+z-2}=\frac{1}{2}\\\frac{y}{z+x-3}=\frac{1}{2}\\\frac{z}{x+y+5}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2x=y+z-2\\2y=x+z-3\\2z=x+y+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=x+y+z-2\\3y=x+y+z-3\\3z=x+y+z+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=-\frac{3}{2}\\3y=-\frac{5}{2}\\3z=\frac{11}{2}\end{cases}}\)

=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
3 tháng 10 2020 lúc 20:54

Dễ thấy nếu x=0 thì y=z=0=>x=y=z=0 là 1 bộ giá trị phải tìm.

giả sử x,y,z khác 0 thì theo đề bài \(x+y+z\ne0\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

Thay kết quả vào dãy tỉ số ban đầu, ta được: \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)

Vậy ta có x=y=z =0 hoặc \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)

Khách vãng lai đã xóa