Chứng minh rằng:A=0,3(20032003 - 19971997) là số tự nhiên.
chứng minh 0,3 ( 20032003-19971997) là số tự nhiên
`= 0,3 . (2003^2000 . 2003^3 - 1997^1996 .1997)`
`=0,3 . (...1 xx ...7 - ...1 xx ...7)`
`= 0,3 . (...7 - ...7)`
`= 0,3 xx ...0`
`= 0`
Chứng minh rằng:a,0,3 . (2003^2003-1997^1997) là một số tụ nhiên
b,\(\frac{1}{10}\)(1997^2004^2006-1993^1994^1998)
cho n là số tự nhiên chia hết cho 3
chứng minh rằng:A=n^3+n^2+3 không chia hết cho 9
A = n3 + n2 + 3
n ⋮ 3⇒ n2 ⋮ 3
⇒ n2 ⋮ 32 (Tính chất của một số chính phương)
⇒ n2 ⋮ 9
⇒ n2.n ⋮ 9
⇒n2.n + n2 ⋮ 9; mà 3 không chia hết cho 9
⇒ n2.n + n2 + 3 không chia hết cho 9
Chứng minh rằng:A =10n +18n-1 chia hết cho 81(n là số tự nhiên chia hết cho 3)
Chứng minh rằng:
a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.
b) Tích của bốn số tự nhiên liên tiếp luôn chia hết cho 4
a) chứng minh rằng:A=1/2+1/2^2+1/3^2+..............+1/2^2016 ko phải là số tự nhiên
b) tìm phân số lớn nhất sao khi chia mỗi phân số 12/35;8/21;52;91 cho phân số đó ta ddeuf được kết quả là các số tự nhiên
Chứng tỏ rằng:A=(n+1999).(n+2012) là một số chẵn với mọi số tự nhiên n
-1/3+1/3^2-1/3^3+1/3^4-.…...+1/3^100+1/3^101 Chứng minh rằng:A=1/2+1/3+1/4+..+1/16 không phải số tự nhiên(chứng minh 0
1/Tìm số tự nhiên a nhỏ nhất.Biết rằng khi chia a cho 17 thì được số dư là 8.Còn khi chia a cho 25 thì được số dư là 16.
2/Chứng minh rằng:A=10n+18.n-1 chia hết cho 27 (với n là số thứ nhiên tùy ý)
1/
Gọi số cần tìm là a
Ta có :
a : 17 dư 8
=> a - 8 chia hết cho 17
=> a + 17 - 8 chia hết cho 17
=> a + 9 chia hết cho 17
a : 25 dư 16
=> a - 16 chia hết cho 25
=> a + 25 - 16 chia hết cho 25
=> a + 9 chia hết cho 25
=> a + 9 thuộc BC ( 17 ; 25 )
Ta có :
17 = 17
25 = 52
=> BCNN ( 17 ; 25 ) = 17 . 52 = 425
=> BC ( 17 ; 25 ) = B ( 425 ) =
=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }
=> a = { -9 ; 416 ; 941 ; 1366 ; .... }
Mà a là số tự nhiên nhỏ nhất
=> a = 416
Vậy số cần tìm là 416
2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath
Ta có :
10n + 18n - 1 = ( 10n - 1 ) + 18n = 999...9 + 18n ( số 999...9 có n chữ số 9 )
= 9 . ( 111...1 + 2n ) ( số 111...1 có n chữ số 1 )
= 9 . A
Xét biểu thức trong ngoặc :
A = 111...1 + 2n = 111...1 - n + 3n ( số 111...1 có n chữ số 1 )
Ta đã biết 1 số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3
Số 111...1 ( n chữ số 1 ) có tổng các chữ số là : 1 + 1 + 1 + ... + 1 = n ( vì có n chữ số 1 )
=> 111...1 ( n chữ số 1 ) và n có cùng số dư trong phép chia cho 3
=> 111...1 ( n chữ số 1 ) - n chia hết cho 3
=> A chia hết cho 3
=> 9 . A chia hết cho 27
Hay 10n + 18n - 1 chia hết cho 27 ( đpcm )