Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Hoàng Vũ Lê
Xem chi tiết
alibaba nguyễn
15 tháng 7 2017 lúc 9:58

\(Z=\frac{\sqrt{x}-5}{\sqrt{x}+2}=1-\frac{7}{\sqrt{x}+2}\ge1-\frac{7}{2}=-\frac{5}{2}\)

Yim Yim
Xem chi tiết
Phan Văn Hiếu
28 tháng 9 2017 lúc 16:12

https://olm.vn/hoi-dap/question/1008119.html

vào đây mà tham khảo

Phan Văn Hiếu
28 tháng 9 2017 lúc 16:18

bạn tham khảo bài này nè

https://olm.vn/hoi-dap/question/1008119.html

Secret
28 tháng 9 2017 lúc 21:49

Câu hỏi của Nguyễn Bá Minh - Toán lớp 9 - Học toán với OnlineMath

Thanh Tùng Nguyễn
Xem chi tiết
╚»✡╚»★«╝✡«╝
Xem chi tiết

\(1,A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

2, Với x>1 ta có \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}\)

\(=\sqrt{x}-1+\frac{3}{\sqrt{x}-1}+3\)

Áp dụng bđt AM-GM ta có

\(\frac{1}{A}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{3}{\sqrt{x}-1}}+3=2\sqrt{3}+3\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}=\pm\sqrt{3}+1\)

\(\Rightarrow x=\left(\pm\sqrt{3}+1\right)^2=4\pm2\sqrt{3}\)

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Kinder
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:31

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

Akai Haruma
31 tháng 12 2020 lúc 14:34

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Trần Thị Thảo Ngọc
Xem chi tiết
Luật Lê Bá
5 tháng 2 2018 lúc 21:08

1. \(B=\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{2}=\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}-2}{2}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

Luật Lê Bá
5 tháng 2 2018 lúc 21:15

b,  

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+2}< \frac{2}{3}=>3\sqrt{x}+3< 2\sqrt{x}+4=>\sqrt{x}< 1=>0\le x< 1\)

Vậy ...

Luật Lê Bá
5 tháng 2 2018 lúc 21:17

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+2}=1-\frac{1}{\sqrt{x}+2}\ge1-\frac{1}{2}=\frac{1}{2}.\)Dấu "=" xảy ra <=> x=0 (t/m) vậy...