cho a=1/2^2+1/3^2+1/4^2+...+1/2022^2 chứng tỏ A không phải số tự nhiên
cho a=2022/2021^2+1 + 2022/2021^2+2 + 2022/2021^2+3 + ....+2022/2021^2+2021 Hãy chứng tỏ A không phải là số tự nhiên
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: (với là số tự nhiên bất kì)
Ta có:
Ta có: với tự nhiên, )
Suy ra
Suy ra do đó không phải là số tự nhiên.
Ta có: (với là số tự nhiên bất kì)
Ta có:
Ta có: với tự nhiên, )
Suy ra
Suy ra do đó không phải là số tự nhiên.
cho a=2022/2021^2+1 + 2022/2021^2+2 + 2022/2021^2+3 + ....+2022/2021^2+2021 Hãy chứng tỏ A không phải là số tự nhiên
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Cho A= 2022/2021^2+1 + 2022/2021^2+2 + 2022/2021^2+3 . . . + 2022/2021^2+2021. Chứng tỏ rằng A không phải là số tự nhiên. GIÚP MIK VỚI MN
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
A = \(\dfrac{2022}{2021^{2^{ }}+1}\) + \(\dfrac{2022}{2021^{2^{ }}+2}\) + \(\dfrac{2022}{2021^2+3}\) + ... + \(\dfrac{2022}{2021^{2^{ }}+2021}\)
Chứng tỏ rằng A không phải số tự nhiên
\(\text{cho M = 1 2 3 + 2 3 3 + 3 4 3 + . . . + 2021 2022 3 + 2022 2023 3 . Chứng tỏ rằng giá trị của M không phải là một số tự nhiên}\)
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\). Chứng tỏ rằng giá trị của M không phải là một số tự nhiên
Cho A = 1/2^2+1/3^2+1/4^2+...+1/2016^2+1/2017^2. Chứng tỏ rằng A không phải là số tự nhiên
A= 1/2^2+1/3^2+1/4^2+...+1/2002^2. Chứng tỏ A không phải là số tự nhiên.
Lời giải:
$A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2002-2001}{2001.2002}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2001}-\frac{1}{2002}$
$=1-\frac{1}{2002}<1$
Mà hiển nhiên $A>0$
$\Rightarrow 0< A< 1$. Do đó $A$ không phải số tự nhiên.