chứng minh 4a^4 + 5a^2 >= 8a^2+2a-1
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
Chứng minh \(4a^4+5a^2\ge8a^3+2a-1\)
\(4a^4+5a^2\ge8a^3+2a-1\)
\(\Leftrightarrow4a^4+5a^2-8a^3-2a+1\ge0\)
\(\Leftrightarrow\left(4a^4-8a^3+4a^2\right)+\left(a^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\)
\("="\Leftrightarrow a=1\)
Chứng minh các bất đẳng thức sau đây:
a) a4+b4+c4+1 >= 2a(b+c)
b) 4a4-4a3+5a2+2a+1 >= 0
c) (ab+bc+ca)2 >= 3abc(a+b+c)
Thanks
Chứng minh các bất đẳng thức sau đây:
a) a4+b4+c4+1 >= 2a(b+c)
b) 4a4-4a3+5a2+2a+1 >= 0
c) (ab+bc+ca)2 >= 3abc(a+b+c)
Thanks
Chứng minh các bất đẳng thức sau đây:
a) a4+b4+c4+1 >= 2a(b+c)
b) 4a4-4a3+5a2+2a+1 >= 0
c) (ab+bc+ca)2 >= 3abc(a+b+c)
1.Tìm STN a để các số sau nguyên tố cung nhau
a)4a+3 và 2a+3
b)7a+4 và 5a+6
c)8a+3 và 3a+1
d)6a+1 và 5a-3
e)9a+4 và 4a+3
g)5a+4 và 6a+5
h)9a+24 và 3a+4
i)7a+13 và 2a+4
2.Tìm STN a biết:
a)5a+1 chia hết cho 7
b)2a+9 chia hết cho 11
c)25a+3 chia hết cho 53
a; 4a + 3 và 2a + 3
Gọi ƯCLN(4a + 3; 2a + 3) = d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}4a+3⋮d\\2a+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+3-4a-6⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\\left(4a-4a\right)+\left(2-6\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4⋮d\end{matrix}\right.\) ⇒ d \(\in\) Ư(4) = {1; 2; 4}
Nếu d = 2 ⇒ 4a + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lý)
Nếu d = 4 ⇒ 4a + 3 ⋮ 4 ⇒ 3 ⋮ 4 (vô lý)
Vậy d = 1 ⇒ (4a + 3; 2a + 3) = 1
Hay 4a + 3 và 2a + 3 là hai số nguyên tố cùng nhau với mọi giá trị của a.
Rút gọn:
\(E=\dfrac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\)
\(E=\dfrac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\left(a\ne\dfrac{1}{2}\right)\)
\(=\dfrac{1}{2a-1}\sqrt{5\left(a^2\right)^2\left(1-2a\right)^2}=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)
Xét \(a>\dfrac{1}{2}\Rightarrow1-2a< 0\Rightarrow\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)
\(=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left(2a-1\right)=\sqrt{5}a^2\)
Xét \(a< \dfrac{1}{2}\Rightarrow1-2a>0\Rightarrow\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)
\(=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left(1-2a\right)=-\sqrt{5}a^2\)
\(E=\dfrac{1}{2a-1}\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{a^2.\left|2a-1\right|.\sqrt{5}}{2a-1}\)
- Với \(2a-1>0\Rightarrow a>\dfrac{1}{2}\) thì \(E=\dfrac{a^2\left(2a-1\right).\sqrt{5}}{2a-1}=a^2\sqrt{5}\)
- Với \(a< \dfrac{1}{2}\) thì \(E=\dfrac{-a^2.\left(2a-1\right).\sqrt{5}}{2a-1}=-a^2\sqrt{5}\)
Ta có: \(E=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\cdot\left(4a^2-4a+1\right)}\)
\(=\dfrac{1}{2a-1}\cdot\dfrac{a^2\cdot\sqrt{5}\cdot\left(2a-1\right)}{1}\)
\(=a^2\sqrt{5}\)
Rút gọn biểu thức sau: C= \(\dfrac{1}{2a-1}.\sqrt{5a^4.\left(1-4a+4a^2\right)}\)
Chứng minh: Cos 5a - 2Cos a(Cos 4a - Cos 2a)= Cos a