Cho ΔABC cân tại A(BC>AB) có đường trung tuyến AI và trọng tâm G.
a, Biết AB=5cm;BC=8cm. Tính đôi dài của các đoạn thẳng AI,BG.
b, M∈tia đối của tia AC, AM=AB.N∈tia đối của tia CA, CN=CB. C/minh BN>BM
Cho tam giác ABC cân tại A (Bc > AB) đường trung tuyến AI và trọng tâm G
a.Biết AB=5cm;BC =8cm .tính AI và BG
Mình quên còn ý b . Trên tia đối của tia AC lấy điểm M sao cho AM =AB.Trên tia đối của tia CA lấy điểm N sao cho BC=CN. CM BN>BM
Cho tam giác ABC cân tại A ( với BC>AB ) có đường trung tuyến AI và trọng tâm G
a) Biết : AB = 5cm , BC = 8cm.Tính độ dài AI , BG
b) Trên tia đối của tia AC lấy điểm M sao cho AM = AB . Trên tia đối của tia CA lấy điểm N sao cho CN = CB.Chứng minh BN > BM
Cho tam giác ABC cân tại A, AB=5cm, BC=8cm, đường trung tuyến AM trọng tâm G. Tính AG
Cho Δ A B C cân tại A, trung tuyến AM. Biết B C = 24 c m , A M = 5 c m . Tính độ dài các cạnh AB và AC.
A. A B = A C = 13 c m
B. A B = A C = 14 c m
C. A B = A C = 15 c m
D. A B = A C = 16 c m
Δ A B C cân tại A (gt) mà AM là trung tuyến nên AM cũng là đường cao của tam giác đó.
Vì AM là trung tuyến của Δ A B C nên M là trung điểm của BC
⇒ B M = B C 2 = 24 : 2 = 12 c m
Cho tam giác ABC cân tại A (Bc > AB) đường trung tuyến AI và trọng tâm G
a.Biết AB=5cm;BC =8cm .tính AI và BG
b,Trên tia đối của tia AC lấy điểm M sao cho AM=AB.Trên tia đối của tia CA lấy điểm N sao cho CN=CB.C/M BN>BM
cho tam giác abc vuông tại A có BC > AB có đường trung tuyến AI và trọng tâm G biết AB=5cm,BC=8cm.
a,Tính độ dài của AI và BG
b,Trên tia đối của AC lấy điểm M sao cho AM=AB.Trên tia đối của tia CA lấy điểm M sao cho CN=CB.Cmr BN>BM
a/ kéo dài đoạn thẳng BG cắt AC tại D.Vì 3 đường trung tuyến cùng đi qua 1 điểm nên BD là đường trung truyến của góc B.
Xét tam giác ABC có góc A=90 độ, BI=CI nên AI=1/2 bc=4 cmÁp dụng định lý Py-ta-go cho tam giác ABC ta có: AB^2+AC^2=BC^2 suy ra AC= căn 39 nên AD=căn 39/2Áp dụng định lý Py-ta- go cho tam giác ABD có góc A= 90 độ suy ra AB^2+AD^2=BD^2 nên BD=139/2 suy ra BG=2/3BD suy ra BG=139/6b/ Vì tam giác ABc vuông tại A nên góc C là góc nhọn suy ra góc BCN là góc tù suy ra góc CNB là góc nhọn suy ra BN> CN
vậy BA<CN<BN
BẠN TỰ VẼ HÌNH ĐI NHÉ.... NẾU THẤY ĐÚNG THÌ K CHO MÌNH VỚI
Cho tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại O
a) Chúng minh O là trọng tâm tam giác ABC
b) Tính độ dài OD biết AB = 5cm, BC = 8cm
c) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của tam giác ABC?
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: BD=CD(hai cạnh tương ứng)
mà B,D,C thẳng hàng(gt)
nên D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(cmt)
BE là đường trung tuyến ứng với cạnh BC(gt)
AD cắt BE tại O(gt)
Do đó: O là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)
b) Ta có: D là trung điểm của BC(cmt)
nên \(BD=CD=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Ta có: ΔABD=ΔACD(cmt)
nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=5^2-4^2=25-16=9\)
hay AD=3(cm)
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh CB(cmt)
O là trọng tâm của ΔABC(cmt)
Do đó: \(OD=\dfrac{1}{3}AD\)(Tính chất trọng tâm của tam giác)
hay OD=1(cm)
Vậy: OD=1cm
c) Xét ΔABC có
O là giao điểm của 3 đường phân giác
O là giao điểm của 3 đường trung tuyến
Do đó: ΔABC đều
Cho ΔABC vuông tại A có AB = 9 cm, AC = 12 cm, BC = 15 cm. Trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE
a, Chứng minh ΔABC = ΔAEC
b, Vẽ đường trung tuyến BH của ΔBEC cắt cạnh AC tại M. Chứng minh M là trọng tâm của ΔBEC và tính độ dài đoạn CM
c, Từ A vẽ đường thẳng song song với EC, cắt BC tại K. Chứng minh 3 điểm E,M,K thẳng hàng.
a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có
AB=AE
AC chung
=>ΔABC=ΔAEC
b: Xet ΔCEB có
CA,BH là trung tuyến
CA cắt BH tại M
=>M là trọng tâm
=>CM=2/3*12=8cm
c: Xét ΔCBE có
A là trung điểm của BE
AK//CE
=>K la trung điểm của BC
=>E,M,K thẳng hàng
cho ΔABC cân tại A , có AB = 5cm , BC= 6cm . Từ A kẻ AH⊥BC (HϵBC).
a . Tính AH
B. Gọi G là trọng tâm của ΔABC . Trên tia AG lấy điểm D sao cho AG = GD . Tia CG cắt AB tại F . CM BD = \(\dfrac{2}{3}\)CF
C. CM DB+DG>AB