Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Minh Sang
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết
Minh  Đức _HERO TEAM
Xem chi tiết
pppp
14 tháng 11 2022 lúc 22:23

4 và 6

 

Minh  Đức _HERO TEAM
Xem chi tiết
Nghiêm Thị Thủy Tiên
Xem chi tiết
Sakamoto Sara
Xem chi tiết
Đoàn Đức Hà
28 tháng 9 2021 lúc 10:17

a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ. 

\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)

(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).

Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).

Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).

b) Đặt \(\left(2n+1,3n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Khách vãng lai đã xóa
buitunganhlpk
Xem chi tiết

a, Vì a là số nguyên tố lớn hơn 3 nên a có dạng 3k+1 hoặc 3k+2(k thuộc N*)

Xét a=3k+1=> a2-1=(a-1)(a+1)=3k(3k+2)\(⋮\)3

Vì k thuộc N* mà 3k,3k+2 là 2 số cùng tính chẵn lẻ liên tiếp nên 3k(3k+2) chia hết cho 8

mà (8,3)=1=> a2-1\(⋮\)24

b,a2-b2 chứ nhỉ

Cố Tử Thần
15 tháng 4 2019 lúc 8:37

ghi chú

câu b là a^2-b^2 mới ra chứ

hok tốt

Hà_Bảo_Trâm
Xem chi tiết
ghjQuyếtjhg
Xem chi tiết