Cho tam giác ABC vuông tại A có BC=5a và trung tuyến BM = a\(\sqrt{3}\).Tính AB và AC
Tam giác ABC vuông tại A và có AB = AC = a. Tính độ dài đường trung tuyến BM của tam giác đã cho.
A. BM = a.
B. B M = a 2
C. B M = a 3
D. B M = a 5 2
Chọn D.
Gọi M là trung điểm của AC suy ra
.
Do tam giác BAM vuông tại A
BÀI NÁY NẰM TRONG HỆ THỨC LƯỢNG TAM GIÁC VUÔNG. Các bạn giúp mình với:
Cho tam giác ABC vuông tại A, Đường cao AH, M là trung điểm của BC . Cho AB =2a. Tính các cạnh của tam giác ABCCho tam giác ABC vuông tại A. Điểm E,F thuộc cạnh AC vỚI AE=EF=FC và BE= \(a\sqrt{3}\), BF=\(a\sqrt{6}\). Tính các cạnh tam giác ABCCho tam giác ABC vuông tại A. hai đường trung tuyến AM và BN vuông góc nhau..Tính AB,BC nếu AC=2a.Tính AB,AC nếu BC=2aCho tam giác ABC vuông tại A, đường phân giác trong BE, EC= 3, BC= 6. TÍNH AB, AC
1) cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Tính BC
a) gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. tính góc DCA
2) Cho tam giác ABC cân tại A có phân giác AK = 18cm ( K thuộc BC ) và BC=16. Tính trung tuyến BM của tam giác ABC
Cho tam giác ABC vuông tại A, trung tuyến BM. Phân giác góc BMA và BMC lần lượt cắt AB, BC tại D, E. Biết AB=8cm, AM=6cm
a, Tính độ dài đoạn thẳng BM, BD
b, chứng minh DE//AC
a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)
MD là phân giác
=>BD/BM=DA/AM
=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1
=>BD=5cm; DA=5cm
b: Xét ΔMBC cóME là phân giác
nên BE/EC=BM/MC=BM/MA=BD/DA
=>DE//AC
1.Tam giác ABC vuông tại A có trung tuyến AM vuông góc với trung tuyến BN, cho AB = x. Tính AC, BC theo x?
2. Tam giác ABC vuông tại A có BD là đường phân giác, trung tuyến AM vuông góc BD. Cho BD = \(2\sqrt{3}x\)(x>0). Tính độ dài các cạnh của tam giác ABC?
Bài 1: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra: BH=CH
b: Ta có: BH=CH
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=12(cm)
\(\Leftrightarrow AG=8\left(cm\right)\)
c: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Cho tam giác ABC vuông tại A, trung tuyến BM. Phân giác góc BMA và BMC lần lượt cắt AB, BC tại D, E.
a, Tính BM, BD biết AB=8cm, AM=6cm
b, DE//AC
c, Tính diện tích ADEC
Cho tam giác ABC cân tại A có BM và CN là hai đường trung tuyến cắt nhau tại G
a) Chứng minh AM vuông góc BC
b) Cho AB = AC = 13cm, BC = 10cm, tính AG
c) Lấy I là trung điểm AB, chứng minh C, G, I thẳng hàng
a) Sửa đề: Cm AG vuông góc với BC
Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AN=NB=AM=MC
Xét ΔNBC và ΔMCB có
NB=MC(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔNBC=ΔMCB(c-g-c)
Suy ra: \(\widehat{NCB}=\widehat{MBC}\)(hai góc tương ứng)
hay \(\widehat{GBC}=\widehat{GCB}\)
Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)(cmt)
nên ΔGBC cân tại G(Định lí đảo của tam giác cân)
Suy ra: GB=GC(hai cạnh bên)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: GB=GC(cmt)
nên G nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AG là đường trung trực của BC
hay AG\(\perp\)BC(đpcm)
Cho tam giác ABC vuông tại A, trung tuyến BM. Phân giác góc BMA và BMC lần lượt cắt AB, BC tại D, E.
a, Tính BM, BD biết AB=8, AM=6
b, CM: DE//AC
c, Tính diện tích ADEC