giải pt
(y+1)^4 +(y-1)^4=82
Giải phương trình: (y+1)^4+(y-1)^4=82
Bài làm:
Ta có: \(\left(y+1\right)^4+\left(y-1\right)^4=82\)
\(\Leftrightarrow y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1=82\)
\(\Leftrightarrow2y^4+12y^2-80=0\)
\(\Leftrightarrow y^4+6y^2-40=0\)
\(\Leftrightarrow\left(y^4+6y^2+9\right)-49=0\)
\(\Leftrightarrow\left(y^2+3\right)^2-7^2=0\)
\(\Leftrightarrow\left(y^2-4\right)\left(y^2+10\right)=0\)
Mà \(y^2+10\ge10>0\left(\forall x\right)\)
\(\Rightarrow y^2-4=0\Leftrightarrow y^2=4\Rightarrow y=\pm2\)
Vậy tập nghiệm của phương trình, \(S=\left\{-2;2\right\}\)
Học tốt!!!!
(y + 1)^4 + (y - 1)^4 = 82
<=> y^4 + 4y^3 + 6y^2 + 4y + 1 + y^4 - 4y^3 + 6y^3 - 4y + 1 = 82
<=> 2y^4 + 12y^2 + 2 = 82
<=> 2y^4 + 12y^2 + 2 - 82 = 0
<=> 2y^4 + 12y^2 - 80 = 0
<=> 2(y^2 + 6y^2 - 40) = 0
<=> y^2 + 6y^2 - 40 = 0
<=> (y^2 - 4)(y^2 + 10) = 0
vì y^2 + 10 > 0 nên:
<=> y^2 - 4 = 0
<=> y^2 = 4
<=> y^2 = 2^2
<=> y = +-2
Giải hệ pt:\(\left\{{}\begin{matrix}\left(x+y\right)^2=30\\x^4+y^4=82\end{matrix}\right.\)
hệ py đối xứng loại 1 .Gi1up mk vs sáng nay ms học nên chưa thạo lắm
Sử dụng đánh giá:
\(x^4+y^4\ge\frac{\left(x+y\right)^4}{8}=\frac{30^2}{8}=\frac{225}{2}>82\) hệ phương trình vô nghiệm
Giải các hệ pt và các pt sau:
1. (x+1)(y-1)=xy+4 (1)
(2x-4)(y+1)=2xy+5(2)
2. \(x^2+x-2\sqrt{x^2+x+1}+2=0\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
giải pt sau
a,x+y+4=2\(\sqrt{x}\)+4\(\sqrt{y-1}\)
b,\(\sqrt{x}\)+\(\sqrt{y-1}\)+\(\sqrt{z-2}\)=\(\dfrac{1}{2}\)(x+y+z)
Lời giải:
a/ ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]=0$
$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2=0$
Vì $(\sqrt{x}-1)^2\geq 0; (\sqrt{y-1}-2)^2\geq 0$ với mọi $x,y$ thuộc đkxđ
Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{x}-1=\sqrt{y-1}-2=0$
$\Leftrightarrow x=1; y=5$
b. ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$
PT $\Leftrightarrow 2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z$
$\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-2\sqrt{y-1}+1]+[(z-2)-2\sqrt{z-2}+1]=0$
$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-1)^2+(\sqrt{z-2}-1)^2=0$
$\Rightarrow \sqrt{x}-1=\sqrt{y-1}-1=\sqrt{z-2}-1=0$
$\Leftrightarrow x=1; y=2; z=3$
giải hệ pt sau:
{√x + 2√y-1 =5
4√x - √y-1 =2
Ta có:
\(\left\{{}\begin{matrix}\sqrt{x}+2\sqrt{y-1}=5\\4\sqrt{x}-\sqrt{y-1}=2\end{matrix}\right.\) (đk \(x\ge0,y\ge1\))
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+2\sqrt{y-1}=5\\8\sqrt{x}-2\sqrt{y-1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}=9\\\sqrt{x}+2\sqrt{y-1}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\1+2\sqrt{y-1}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2\sqrt{y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\left(tm\right)\)
Giải hệ pt : \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=4\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\end{matrix}\right.\)
ĐK: \(x\ne0\) ; \(y\ne0\)
Hệ phương trình tương đương với:
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=8\end{matrix}\right.\)
Đặt \(S=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)\)
\(P=\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\)
Mà \(S^2\ge4P\)
Ta có: \(\left\{{}\begin{matrix}S=4\\S^2-2P=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=4\\P=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
giải pt nghiệm nguyên dương sau :3(x^4+y^4+x^2+y^2+2)=2(x^2-x+1)(y^2-y+1)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
Giải pt sau
{4}/y-1- 2y / y²-1=0