Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen Thuy
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 21:00

a: Trường hợp 1: x=3k

\(\Leftrightarrow A=\left(3k+3\right)\left(3k+7\right)\left(3k+11\right)⋮3\)

Trường hợp 2: x=3k+1

\(\Leftrightarrow A=\left(3k+4\right)\left(3k+8\right)\left(3k+12\right)⋮3\)

Trường hợp 3: x=3k+2

\(\Leftrightarrow A=\left(3k+5\right)\left(3k+9\right)\left(3k+13\right)⋮3\)

nguyen thuy trang
Xem chi tiết
Hằng Phạm
1 tháng 1 2016 lúc 20:05

A = 8.n + 111......11111 
= ( 8 + 111...11111 ) . n 
= 9999.......9 . n chia hết cho 9 ( dấu hiệu nhận biết ) 
=> ĐPCM

Cô Nàng Lạnh Lùng
1 tháng 1 2016 lúc 20:05

Tổng các chữ số của số 111...1 (n chữ số 1) là:1+1+1+...+1=1.n

=>tổn các chữ số của A là:

8.n+1.n =n.(8+1)=9n

Vì 9n chia hết cho 3

=>Tổng các chữ số của số A chia hết cho 3

=>A chia hết cho 3 (ĐPCM)

Miyuhara
1 tháng 1 2016 lúc 20:05

111...111 (n chữ số 1) là số có tổng các chữ số là n (chia hết cho 9 thì phải xét theo tổng các chữ số) 

=> 8.n + n = 9.n chia hết cho 9

Lê Thị Thanh Quỳnh
Xem chi tiết

1/

Gọi số cần tìm là a

Ta có : 

a : 17 dư 8 

=> a - 8 chia hết cho 17

=> a + 17 - 8 chia hết cho 17

=> a + 9 chia hết cho 17

a : 25 dư 16

=> a - 16 chia hết cho 25

=> a + 25 - 16 chia hết cho 25

=> a + 9 chia hết cho 25

=> a + 9 thuộc BC ( 17 ; 25 )

Ta có :

17 = 17

25 = 52 

=> BCNN ( 17 ; 25 ) = 17 . 52 = 425

=> BC ( 17 ; 25 ) = B ( 425 ) = 

=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }

=> a = { -9 ; 416 ; 941 ; 1366 ; .... }

Mà a là số tự nhiên nhỏ nhất 

=> a = 416

Vậy số cần tìm là 416

Khách vãng lai đã xóa
Nguyễn Linh Chi
14 tháng 12 2019 lúc 16:22

2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa

Ta có :

10n + 18n - 1 = ( 10n - 1 ) + 18n = 999...9 + 18n ( số 999...9 có n chữ số 9 )

                                                    = 9 . ( 111...1 + 2n ) ( số 111...1 có n chữ số 1 )

                                                    = 9 . A

Xét biểu thức trong ngoặc :

A = 111...1 + 2n = 111...1 - n + 3n ( số 111...1 có n chữ số 1 )

Ta đã biết 1 số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3

Số 111...1 ( n chữ số 1 ) có tổng các chữ số là : 1 + 1 + 1 + ... + 1 = n ( vì có n chữ số 1 ) 

=> 111...1 ( n chữ số 1 ) và n có cùng số dư trong phép chia cho 3 

=> 111...1 ( n chữ số 1 ) - n chia hết cho 3 

=> A chia hết cho 3

=> 9 . A chia hết cho 27

Hay 10n + 18n - 1 chia hết cho 27 ( đpcm )

Khách vãng lai đã xóa
pro2435
Xem chi tiết
Etermintrude💫
14 tháng 3 2021 lúc 11:07

undefined

Huy Bui
Xem chi tiết
Nguyễn Thị Anh
17 tháng 6 2016 lúc 15:30

 a=11...1:2n số 1 nên a=(10^2n - 1)/9 
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9 
c=66...6:n số 6 nên c=6*(10^n -1)/9 
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9 
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9 
=[ (10^n)^2 + 2*10^n(5+3) +64]/9 
=[ (10^n)^2 + 2*8*10^n + 8^2]/9 
= (10^n + 8 )^2/9 
= [(10^n + 8 )/3]^2 
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương

Huy Bui
Xem chi tiết
Nguyễn Thị Anh
17 tháng 6 2016 lúc 9:24

a=1.....1(2n số 1)=1....1(n số 1).10n +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1)  10n =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương

Một người bình thường vô...
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 6 2021 lúc 14:36

a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)

\(=5^n.51+8.64^n\)

Có \(64\equiv5\) (mod 59)

\(\Rightarrow64^n\equiv5^n\) (mod 59)

\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)

mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59) 

\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)

b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)

Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)

Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)

\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)

\(\Rightarrow16^n-9^n-7⋮3\) (II)

Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8) 

\(\Rightarrow9^n+7⋮8\)  mà \(16^n=2^n.8^n⋮8\) 

\(\Rightarrow16^n-9^n-7⋮8\) (III)

Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)

Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\) 

\(\Rightarrow\) Đpcm

Nguyễn Hoài Đức CTVVIP
28 tháng 6 2021 lúc 15:54

a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n

=5n.51+8.64n=5n.51+8.64n

Có 64≡564≡5 (mod 59)

⇒64n≡5n⇒64n≡5n (mod 59)

⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)

mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59) 

Hoàng Thị Kim Ngân
1 tháng 11 2021 lúc 15:13

cho e hỏi là 3 dấu gạch ngang là gì vậy ạ

Khách vãng lai đã xóa
Đỗ Đức Hà
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 17:53

Lời giải:

Đặt $n=2k+1$

Số số hạng: $\frac{n-1}{2}+1=\frac{2k+1-1}{2}+1=k+1$

Tổng A là:

$A=\frac{(k+1)(2k+1+1)}{2}=\frac{2(k+1)^2}{2}=(k+1)^2$ là số chính phương (đpcm)

M Trang
Xem chi tiết
Nguyễn Giang Ngân
Xem chi tiết
Dragon
22 tháng 9 2015 lúc 21:26

nếu a là 1 số chẵn thì a+2015= 1 số lẻ mà chẵn*lẻ= lẻ 

=> chia hết cho 2

nếu a là 1 só lẻ thì a +2015 = 1 số chẵn mà lẻ*chẵn= chẵn

=> chia hết cho 2(đpcm)