Tìm x \(\in N\)* để \(n^4-3n^3+4n^2-3n+3\) là số nguyên tố
Tìm n nguyên dương để 3n-4; 4n-5 ; 5n-3 đều là số nguyên tố
Tổng 3 số là 1 số chẵn nên 1 trong 3 số phải có 1 số chẵn nguyên tố (là 2)
Vì 4n-5 lẻ nên 3n-4=2 hoặc 5n-3=2
Giải ra ta được n=2
\(\text{Nếu n = 1 thì 3n - 4 = -1 (loại)}\)
Nếu n = 2 thì:
\(\hept{\begin{cases}3n-4=2.3-4=2\\4n-5=2.4-5=3\\5n-3=2.5-3=7\end{cases}}\)
Các số trên đều là số nguyên tố nên n = 2 thỏa mãn
Nếu n > 2 thì 3n - 4 ; 4n - 5 ; 5n - 3 đều lớn hơn 2
Ta có:
Với n=2k thì 3n - 4 = 6k - 4 \(⋮\) 2 nên không là số nguyên tố
Với n = 2k + 1 thì 5n - 3 = 5 (2k+1) - 3 = 10k + 2 \(⋮\)2 nên không là số nguyên tố
Do đó không có số tự nhiên n > 2 nào thảo mãn
Vậy n=2
Xét n lẻ và n>1 thì 5n-3 chẵn và >2=> vô lý
n=1 loại
n chẵn và n>2 thì 3n-4 là hợp số
Thử với n=2 đúng
KL:n=2.
Tìm số nguyên dương n để 3n-4; 4n-5; 5n-3 đều là các số nguyên tố
mẤy bọn ngôn lù này sao ngu thế nhỉ
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Tìm số tự nhiên n để:
a) 4n+3 và 2n+3 là các số nguyên tố cùng nhau
b) 9n+24 và 3n+4 là các số nguyên tố cùng nhau
a, gọi ước chung lơn nhất của .... là d
4n+3 chia hết cho d
2n+ 3 chia hết cho d
=> 2(2n+3) chia hết cho d
=> 4n+5 chia hết cho d
=> (4n+5)-(4n+3) chia hết cho d
=> 2 chia hết cho d
=> d= 1,2
mà 2n+3 là số lẻ ( ko chia hết cho 2)
=> d= 1
vây ......
B1.Tìm số IN nhỏ nhất biết số đó chia 5 dư 3, chia 7 dư 4
B2. Tìm số IN n sao cho:
a, 4n-5 chia hết cho 13
b, 25n+3 chia hết cho 53
B3. Tìm số IN n để 9n+24 và 3n+4 là các số nguyên tố cùng nhau
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a) n + 3 và n + 2;
b) 3n + 4 và 3n + 7;
c) 2n + 3 và 4n+ 8.
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
1.Chứng Minh Các Số Nguyên Tố Cùng Nhau
a, 2n và 2n+1
b, 3n+4 và 4n+5
c, 12n+3 và 16n+3
2. Tìm x,y \(\in\) N,để
y.(x+3)=12
-2n và 2n+1 là 2 số tự nhiên liên tiếp, mà 2 số tự nhiên liên tiếp ko bao giờ chia hết cho nhau cả.
-
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
tìm STN n để các số sau là các số nguyên tố cùng nhau
a, 2n+1 và 7n+2
b, 3n+2 và 11n+5
c, 2n+3 và 4n+9
d, 7n+3 và 3n+2
a) 2n+1 và 7n+2
Gọi d là ƯCLN của 2n+1 và 7n+2
Vì 2n+1 chia hết cho d,7n+2 chia hết cho d
TC: 7.(2n+1) chia hết cho d , 2.(7n+2) chia hết cho d
14n+7 chia hết cho d , 14n+14 chia hết cho d
Nên (14n+14)-(14n+7) chia hết cho d
14n+14-14n+7 chia hết cho d
7 chia hết cho d
d=7
Kết luận
Các câu khác tương tự nhé