Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ice Wings
Xem chi tiết
Kurosaki Akatsu
28 tháng 12 2016 lúc 15:49

Cậu có thể vào đây tham khảo : http://h.vn/hoi-dap/question/119685.html

Đặng Trần Bảo Ngọc
9 tháng 1 2022 lúc 10:14

chịu thôi bạn ạ ko hiểu gì hết 

Khách vãng lai đã xóa
Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2023 lúc 22:53

\(\lim\limits\dfrac{\sqrt{2\cdot4^n+1}-2^n}{\sqrt{2\cdot4^n+1}+2^n}\)

\(=\lim\limits\dfrac{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}-2^n}{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}+2^n}\)

\(=\lim\limits\dfrac{\sqrt{2+\dfrac{1}{4^n}}-1}{\sqrt{2+\dfrac{1}{4^n}}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)

\(=\dfrac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-2\sqrt{2}}{2-1}=3-2\sqrt{2}\)

=>a=3; b=-2

\(a^3+b^3=3^3+\left(-2\right)^3=27-8=19\)

kirigaya
Xem chi tiết
Đức Hiếu
2 tháng 3 2021 lúc 9:58

\(lim\left(\dfrac{1}{1.3}+\dfrac{1}{2.4}+...+\dfrac{1}{n\left(n+2\right)}\right)\)

\(=lim\left[\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\right)+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{n\left(n+2\right)}\right)\right]\)

\(=lim\left(\dfrac{1}{2}\left(1-\dfrac{1}{n+1}+\dfrac{1}{2}-\dfrac{1}{n+2}\right)\right)\)

\(=lim\left(\dfrac{1}{2}.\left(\dfrac{3}{2}-\dfrac{2n+3}{n^2+3n+2}\right)\right)\)

\(=\dfrac{3}{4}\)

Kirigawa Kazuto
Xem chi tiết
Do minh linh trang
Xem chi tiết
Nguyễn Linh Chi
19 tháng 9 2019 lúc 7:02

Ta có:

\(1+\frac{1}{1.3}=\frac{4}{1.3}=\frac{2^2}{1.3}\)

\(1+\frac{1}{2.4}=\frac{9}{2.4}=\frac{3^2}{2.4}\)

\(1+\frac{1}{3.5}=\frac{16}{3.5}=\frac{4^2}{3.5}\)

...

\(1+\frac{1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

=>

\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.2.3^2.4^2...\left(n+1\right)\left(n+2\right)}=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}\)

\(=\frac{2\left(n+2\right)-2}{n+2}=2-\frac{2}{n+2}< 2\)

Vậy B < 2 

Cao Minh Tuấn
1 tháng 11 2019 lúc 21:52

\(B=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)\)

\(=\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)...\left(\frac{n.\left(n+2\right)+1}{n.\left(n+2\right)}\right)\)

\(=\left(\frac{2^2}{1.3}\right).\left(\frac{3^2}{2.4}\right).\left(\frac{4^2}{3.5}\right)...\left(\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\right)\)

\(=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)

\(=\frac{\left(n+1\right)}{1}.\frac{2}{\left(n+2\right)}\)

\(=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}=2.\frac{n+1}{n+2}< 2\)(vì \(\frac{n+1}{n+2}< 1\))

Vậy B < 2

Khách vãng lai đã xóa
DoDi Na
Xem chi tiết
Trần Huyền Trang
Xem chi tiết
Kamato Heiji
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 18:54

Thuật toán: 

Bước 1: Nhập n

Bước 2: i←1; a←0;

Bước 3: a←a+1/(i*(i+2));

Bước 4: i←i+1;

Bước 5: Nếu i<=n thì quay lại bước 3

Bước 6: xuất a

Bước 7: Kết thúc

Viết chương trình:

uses crt;

var a:real;

i,n:longint;

begin

clrscr;

write('Nhap n='); readln(n);

a:=0;

for i:=1 to n do

a:=a+1/(i*(i+2));

writeln(a:4:2);

readln;

end.

Bùi Anh Tuấn
25 tháng 1 2021 lúc 19:38

holicuoi
Xem chi tiết
Trần Thị Loan
15 tháng 6 2015 lúc 10:13

=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{2^2.3^2...n^2}{1.3.2.4....\left(n-1\right).\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4...n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4.5...\left(n+1\right)\right)}=\frac{2015}{1008}\)

<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)

=> 1008.2n = 2015.(n+1)

<=> 2016n = 2015n + 2015

<=> n = 2015

*) Bạn hỏi câu này một lần rồi!!!

holicuoi
15 tháng 6 2015 lúc 10:14

nhung hinh nhu ban lam sai de roi thi phai