giải bất phương trình:
a) -3x2 + 4x - 4 <0 b) (2x + 1) ( x2 +x - 30) ≥ 0
c) 4x + 10x + 6
giải bất phương trình:
a) -3x2 + 4x - 4 <0 b) (2x + 1) ( x2 +x - 30) ≥ 0
c) \(\dfrac{4x^2+10x+6}{16x^2+40x+25}\le0\) d) I3x+5I < 2 -x
Giải bất phương trình:
a, 2x ² -4 < 2( x+1) ²
b, (x-3) ² - 5 < -6x
c, x ² - 4x +3 <0
MỌI NGƯỜI TRẢ LỜI ĐẦY ĐỦ VÀ CHI TIẾT NHÉ!
a,
\(\Leftrightarrow\left(\left(2x^2-4\right)-2\left(x+1\right)^2\right)< 0\)
\(\Leftrightarrow2x^2-4-2\left(x^2+2x+1\right)< 0\)
\(\Leftrightarrow2x^2-4-2x^2-4x-2< 0\)
\(\Leftrightarrow-4x-6< 0\)
\(\Rightarrow x+\dfrac{3}{2}>0\)
\(\Rightarrow x>-\dfrac{3}{2}\)
\(x\in\left\{-\dfrac{3}{2};\infty\right\}\)
b/
\(\Leftrightarrow\left(x-3\right)^2-5+6x< 0\)
\(\Leftrightarrow x^2-6x+9-5+6x< 0\)
\(\Leftrightarrow x^2+4< 0\) ( điều này vô lý vì không có giá trị nào của x khiến x^2+4<0)
từ trên suy ra:
không có giá trị nào của x để pt này đúng .
c, đưa các hệ số vào công thức bậc 2 ( áp dụng ct bậc 2):
có: \(x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2.a}\)
Với : a=1 ; b=-4 ; c =3
Ta có:
\(x=\dfrac{-1.-4\pm\sqrt{-4^2-4.1.3}}{2.1}\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{4}}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{4+2}{2}\\x_2=\dfrac{4-2}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=3\\x_2=1\end{matrix}\right.\)
tìm khoảng bđt bằng parabol :
có một dấu bất đẳng thức
\(\Rightarrow1< x< 3\)
giải bất phương trình
a,-2x2+3x-7>0
b,3x2-4x+4
a) BPT \(\Leftrightarrow-2\left(x^2-\dfrac{3}{2}x+\dfrac{7}{2}\right)>0\)
\(\Leftrightarrow-2\left(x^2-2x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{47}{16}\right)>0\)
\(\Leftrightarrow-\dfrac{47}{8}-2\left(x-\dfrac{3}{4}\right)^2>0\) (Vô lý)
b) Bạn xem lại đề !
Giải phương trình:
a, x^2+3|x|-4=0
b,|x^2-4|=x^2-4
c,(x+1)^2-|3-2x|-|x-2|^2+6=0
d,x^2+4x+3+|2x+5|-(x+1)(x+3) - 5+2x=0
Giải bất phương trình:
a, 2|x-1| <x+1
b, |x-3| > x+1 phần 2
mình đang cần gấp ;-;
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
Giải phương trình và bất phương trình:
a) \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}-3=0}\)
b) \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) ≤ \(\dfrac{-3}{4}\)
c) \(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
giải phương trình:
a,\(\sqrt{2-3x}\)=-3x2+7x-1
b,6x2+2x+1=3x\(\sqrt{6x+3}\)
a.
ĐKXĐ: \(x\le\dfrac{2}{3}\)
\(3x^2-7x+2-\left(1-\sqrt{2-3x}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)-\dfrac{3x-1}{1+\sqrt{2-3x}}=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-2-\dfrac{1}{1+\sqrt{2x-3}}\right)=0\) (1)
Do \(x\le\dfrac{2}{3}\Rightarrow x-2< 0\Rightarrow x-2-\dfrac{1}{1+\sqrt{2-3x}}< 0;\forall x\in TXĐ\)
Nên (1) tương đương:
\(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
\(18x^2+6x+3=9x\sqrt{6x+3}\)
Đặt \(\sqrt{6x+3}=y\ge0\) ta được:
\(18x^2+y^2=9xy\)
\(\Leftrightarrow18x^2-9xy+y^2=0\)
\(\Leftrightarrow\left(6x-y\right)\left(3x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3x\\y=6x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=6x\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}6x+3=9x^2\\6x+3=36x^2\end{matrix}\right.\) (\(x\ge0\))
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{13}}{12}\end{matrix}\right.\)
Giúp vs ạ
Bài 1 giải các bất phương trình sau
a.x2 - x - 6 = 0
b.2x2 - 7x + 5 < 0
c.3x2 - 9x + 6 ≥ 0
d.2x2 - 5x + 3 < 0
Bài 2 Giải phương trình sau
A.√x2 + x + 5 = √2x2 - 4x + 1
B.√11x2 -14x - 12 = √3x2 + 4x - 7
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
Giải phương trình:
a) 2(x+3) - (3+x)(1+2x) = 0
b) x2 - 4x + 4 = 9
a)2.(x+3)-(3+x).(1`+2x)=0\(\Leftrightarrow\)2x+6-3-6x-x-2x\(^2\)=0
\(\Leftrightarrow\)-2x\(^2\)-5x+3=0\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy PT đã cho có tập nghiệm S=\(\left\{-3;\dfrac{1}{2}\right\}\)
b)x\(^2\)-4x+4=9\(\Leftrightarrow\)x\(^2\)-4x+4-9=0\(\Leftrightarrow\)x\(^2\)-4x-5=0
\(\Leftrightarrow\left\{{}\begin{matrix}5-x=0\\1+x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy PT đã cho có tập nghiệm S=\(\left\{-1;5\right\}\)
Giải phương trình:
a) 2(x+3) - (3+x)(1+2x) = 0
b) x2 - 4x + 4 = 9
\(a,\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\-2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(b,\Leftrightarrow\left(x-2\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
a) \(2\left(x+3\right)-\left(x+3\right)\left(1+2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
-Vậy \(S=\left\{-3;\dfrac{1}{2}\right\}\)
b) \(x^2-4x+4=9\)
\(\Leftrightarrow\left(x-2\right)^2-9=0\)
\(\Leftrightarrow\left(x-2-3\right)\left(x-2+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
-Vậy \(S=\left\{5;-1\right\}\)