chứng tỏ rằng:
21 mũ 20 trừ 11 mũ 10 chia hết cho 2 và 5
Chứng tỏ rằng:
A,6 mũ 100 trừ 1 chia hết cho 5
B,21 mũ 20 trừ 11 mũ 10 chia hết cho 2 và 5
Trả lời giúp mình với!
Mình Cần gấp quá ! ai trả lời mình tâu người đó làm sư tổ
tận cùng là 6 thì mũ mấy cũng là sáu nên trừ 1 tận cùng là 5 nên cia hết cho 5
cau b tuong tu
__________________1________________1____________trừ 1 là 0 chia hết cho 5
Chứng tỏ rằng:
A,6 mũ 100 trừ 1 chia hết cho 5
B,21 mũ 20 trừ 11 mũ 10 chia hết cho 2 và 5
Trả lời giúp mình với!
a) Ta có: 6x6=36=>hai số có tận cùng là 6 nhân với nhau được tích tận cùng là 6
Mà 6 mũ 100=36 mũ 50=..........
=> 6 mũ 100 có tận cùng =6
=> 6 mũ 100-1 có tận cùng =5=>chia hết cho 5
a) 6 mũ 100 có chư số tận cùng là 6 mà số có chư chữ số tận cùng là 5 thì chia hết cho 5
nên 6 mũ 100 -1 có chữ số tận cùng là 5
vậy 6 mũ 100 trừ 1 chia hêt cho 5
câu b thì mình chịu !
Bài 1:
chứng tỏ rằng
8 mũ 5 +2 mũ 11 chia hết cho 17
69 mũ 2 trừ 69 nhân 5 chia hết cho 32
8 mũ 7 trừ 2 mũ 18 chia hết cho 14 ( làm đc 1 like)
85 + 211 = (23)5 + 211 = 215 + 211
= 211.24 + 211.1 = 211.(16 + 1) = 211 . 17 (chia hết cho 17)
692 - 69.5 = 69.69 - 69.5
= 69.(69 - 5) = 69.64 = 69.2. 32 (chia hết cho 32)
87 - 218 = (23)7 - 218 = 221 - 218
= 218. 23 - 218.1 = 218.(8 - 1)
= 218 . 7 = 217 . 2 . 7 = 217 . 14 (chia hết cho 14)
chứng tỏ rằng 17 mũ 5 +24 mũ 4 -13 mũ 21 chia hết cho 10
Chứng tỏ rằng : 5 mũ 20 + 25 mũ 11 + 125 mũ 7 chia hết cho 31.
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
5^20+25^11+125^7=5^20+(5^2)^11+(5^3)^7= 5^20+5^22+5^21=5^20(1+5^2+5)=5^20.31
Vậy 5^20+25^11+125^7 chia hết cho 31
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
a. chứng tỏ rằng : A = 1+ 2 +2 mũ 3 + 2 mũ 4 + ........+ 2 mũ 29 chia hết cho 7
b. chứng tỏ rằng : A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 90 chia hết cho 21
Tôi tên là Ngọc Anh . Năm nay Tôi 11 tuổi. Tôi không biết bài này