Tìm các chữ số a,b,c,d biết a, bcd bằng abcabc
tìm các chữ số a, b, c, d, biết a x bcd x abc = abcabc
abcabc = abc . 1000 + abc
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3
abcabc = abc . 1000 + abc
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3
=> abcabc = abc . ( 1000 + 1 ) = abc . 1001
Ta có : a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích của số có 1 chữ số với số có 3 chữ số nên ta dễ dàng tìm a = 7 ( vì từ 1 đến 9 thi 1001 chia hết cho 7 )
=> bcd = 143
a = 7 , b = 1 , c = 4 , d = 3
Tìm các chữ số : a, b,c , d biết: a x bcd x bcd = abcabc. Mình sẽ tích cho bạn nào có câu trả lời đúng và nhanh nhất. Cảm ơn nhiệt tình.
Tìm các số a, b, c, d biết a . bcd . abc = abcabc
abcabc = abc . 1000 + abc
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3
Theo bài ra ta có:
a.bcd.abc=abcabc
a.bcd = abcabc : abc =1001
Như vậy 1001 là tích mọt số có một chữ số và một số có ba chữ số.
Ước có 1 chữ số duy nhất của 1001 là 7 => a= 7 => bcd = 143
Vậy a= 7 , b= 1 , c= 4 , d=3
Bài 2 : So sách
A = 35 x 53 - 18 vad D = 35 + 53 x 34
Tìm các chữ số a,b,c,d biết a.bcd.abc=abcabc
abcabc = abc . 1000 + abc
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3
Tìm các chữ số a : b ; c ; d biết :
\(a.\overline{abc}.\overline{bcd}=\overline{abcabc}\)
abcabc = abc . 1000 + abc
\(\Leftrightarrow\)abcabc = abc . (1000 + 1)
Suy ra : a. bcd . abc = abcabc
\(\Leftrightarrow\)a. bcd . abc = abc . 1001
\(\Leftrightarrow\)a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 (vì từ 1 đến 9 chỉ có 7 chia hết cho 1001) từ đó suy ra bcd = 143
Vậy : a = 7 ; b = 1 ; c = 4 ; d = 3
a . abc . bcd = abcabc
a . abc . bcd = abc . 1001
=> a . bcd = 1001
7 . 143 = 1001
=> a = 7 ; b = 1 ; c 4 ; d = 3
a . abc . bcd =abcabc
=> ta có :
=> a .abc.bcd=abc
=> a . bcd = 1001
=> 7 . 143 = 1001
=> a = 7 ; b=1 ; d=4 ; c=3
Giải bài
Tìm các chữ số a b c biết
Bcd×abc=abcabc
Tìm các chữ số a, b, c, d biết a. bcd . abc= abcabc
giúp mk nha !!!!
Ta có:
a . bcd . abc = abcabc
=> a . bcd . abc = abc . 1000 + abc
=> a . bcd . abc = abc . 1001
=> a . bcd = 1001
=> a . bcd = 7 . 11 . 13
Mà a là chữ số => a = 7; bcd = 11 . 13 = 143
Vậy a = 7; b = 1; c = 4; d = 3
tìm các chữ số a,b,c ,d biết rằng a.bcd . abc = abcabc
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Tìm các chữ số a, b, c, d Biết a.bcd . abc = abcabc
Đây là bài của Đinh Tuấn Việt ! cậu nhớ **** cho bạn ấy nhé !
<=> abcabc = abc . (1000 + 1) = abc . 1001
Ta có a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3
Vậy abcd = 7143
băng 7143 dung 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%