Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phước Lộc
Xem chi tiết
Char
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 3 2022 lúc 7:28

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AC=5cm

d: Xét ΔKBH vuông tại K và ΔMCH vuông tại M có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔKBH=ΔMCH

Suy ra: KB=MC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2018 lúc 18:11

Trần Hải Việt シ)
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2022 lúc 22:01

a: Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

b: Ta có: ΔBMH=ΔCNH

nên BM=CN

=>AM=AN

hay ΔAMN cân tại A

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

mà AH⊥BC

nên AH⊥MN

Lina
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 20:33

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAHM=ΔAHN

Suy ra: AM=AN

hay ΔAMN cân tại A

c: Ta có: AM=AN

HM=HN

Do đó: AH là đường trung trực của MN

hay AH⊥MN

TV Cuber
8 tháng 4 2022 lúc 20:38

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

cạnh AH chung

AB=AC(vì tam giác ABC cân tại A)

=> ΔAHB=ΔAHC(c.h-c.g.v)

 Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

\(\widehat{HAM}=\widehat{HAN}\)

cạnh AH chung

==> ΔAHM=ΔAHN(c.h-g.n)

==> AM=AN

=> ΔAMN cân tại A ( dấu hiệu)

 

c)Ta có:HM=HN   ;  AM=AN

===>AH là đường trung trực của MN

=>\(\text{AH⊥MN}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 2 2019 lúc 15:21

Eun Junn
Xem chi tiết
Thanh Hoàng Thanh
23 tháng 1 2022 lúc 15:39

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

Nguyễn Ngân Phương
Xem chi tiết
Phùng Thảo Nhi
1 tháng 3 2020 lúc 9:09

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

Khách vãng lai đã xóa
Nguyễn Thị Định
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 21:25

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Ta có: ΔABH=ΔACH

nên HB=HC và \(\widehat{BAH}=\widehat{CAH}\)

c: Xét ΔHKB vuông tại K và ΔHIC vuông tại I có

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHKB=ΔHIC