Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trọng
Xem chi tiết
Lê Trọng
Xem chi tiết
cutecuteo
26 tháng 6 2016 lúc 16:51

Tớ nghĩ x=y=z=0 đó bạn

Đặng Noan ♥
Xem chi tiết
Nguyễn Thị Mát
26 tháng 11 2019 lúc 18:21

Áp dụng BĐT Cô - si ngược dấu :

\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4\left(x-2010\right)}\le\frac{4+\left(x-2010\right)}{4}\)

\(\Rightarrow\sqrt{x-2010}-1\le\frac{4+\left(x-2010\right)}{4}-1=\frac{x-2010}{4}\)

\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}\le\frac{1}{4}\)

Hoàn toàn tương tự với những phân thức còn lại 

\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2010=4\\x-2011=4\\z-2012=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\\z=2016\end{cases}}}\)

Khách vãng lai đã xóa
Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Minh Hoàng
7 tháng 8 2021 lúc 9:40

Ai giúp e vs ạ

addfx
Xem chi tiết
Nguyễn ngọc trân
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 14:51

TH1: \(z=0\Rightarrow4x^2-y^2=19\Leftrightarrow\left(2x-y\right)\left(2x+y\right)=19\)

\(\Rightarrow\left(x;y\right)=\left(5;9\right)\)

TH2: \(z=1\Rightarrow4x^2-y^2=2040\Rightarrow\left(2x-y\right)\left(2x+y\right)=2040\)

(ko có nghiệm nguyên)

TH3: \(z\ge2\Rightarrow2022^z⋮4\)

Do \(4x^2;2022^2;18\) đều chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn \(\Rightarrow y=2k\)

\(\Rightarrow4x^2=4k^2+2022^z+18\)

\(\Rightarrow4x^2-4k^2-2022^z=18\)

Vế trái chia hết cho 4, vế phải ko chia hết cho 4 nên pt vô nghiệm

Vậy pt có bộ nghiệm tự nhiên duy nhất: \(\left(x;y;z\right)=\left(5;9;0\right)\)

Nguyễn Lê Nhật Linh
Xem chi tiết
Ngu Ngu Ngu
20 tháng 4 2017 lúc 10:52

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

???
Xem chi tiết