Tìm tất cả các số nguyên dương n biết n cộng với tổng các chữ số của n = 2013
Tìm tất cả các số nguyên dương n biết rằng n cộng tổng các chữ số của số đó bằng 2013 ?
tìm số nguyên dương n, sao cho n cộng với tổng các chữ số của nó = 2013
Gọi số đó là \(\overline{abcd}\)
Theo đề bài, ta có: \(\overline{abcd}+a+b+c+d=2013\)
\(\Rightarrow1001a+101b+11c+2d=2013\)
Ta thấy với a=1 thì tổng trên sẽ bé hơn 2013 và với a=3 thì 1001a=3003 > 2013
=> a=2
=> 101b+11c+2d=2013-2.1001=11
Vậy b=0 => 11c+2d=11
c=1 ; d=0
=> số cần tìm là : n=2010
Gọi S(n) là tổng tất cả các chữ số của số nguyên dương n khi biểu diễn nó trong hệ thập phân. Biết rằng với mọi số nguyên dương n thì ta có 0<S(n)<=n. Tìm số nguyên dương n sao cho S(n)=n^2- 2011n+ 2010
\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)
\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))
* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))
Vậy không tồn tại số nguyên dương n thỏa mãn đề bài
Số lượng của tất cả các số nguyên dương n sao cho n + S (n) = 2016. Trong đó S (n) là tổng của tất cả các chữ số của n . Tìm n
Tìm tất cả các số nguyên dương N có 2 chứ số sao cho tổng tất cả các chữ số của số \(10^N-N\) chia hết cho 170
Tìm tất cả các số tự nhiên n, biết rằng n cộng với tổng các chữ số của nó bằng 2003
goi so can tim la ABCD
Ta co ABCD +A+B+C+D =2003
A.1001+B.101+C.11+D.2=2003
ĐẾN ĐÂY BẠN DÙNG CÔNG THỨC TÌM SỐ TỰ NHIÊN SE GIAI DUOC NHE
Tìm tất cả các số tự nhiên n, biết rằng n cộng với tổng các chữ số của nó bằng 2003
Bài 1 : Tìm tất cả các số nguyên dương n biết n + tổng các chữ số của nó = 2013
Bài 2 : Cho các số nguyên dương a, b, c, d, e, g thỏa mãn:a2 + b2 + c2 = d2 + e2 + g2. Hỏi a + b + c + d + e + g là hợp số hay số nguyên tố?
Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11
a=0 => b=11(loại)
a=1 => b=0 => n=2010
với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n ≥ 2013-28=1985
xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103
do n ≥ 1985 => a ≥ 8
a=8 => b=7,5 (loại)
a=9 => b=2 => n=1992
Bài 2: Chắc là hợp số :D
từ \(a^2+b^2+c^2=e^2+f^2+d^2\)
=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)
=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\) ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)
=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)
=>a+b+c ≡ d+e+f (mod 2)
=> a+b+c+d+e+f chia hết cho 2
với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó .Chẳng hạn d(2018) = 4 vì 2018 có và chỉ có 4 ước Nguyên Dương là 1;2;1009; 2018 và s (2018) = 1 + 2 + 1009 + 2018 = 3030 Tìm tất cả các số nguyên dương x sao cho s(x).d(x)= 96
Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến