\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+....+\frac{3}{2^9}\)
Tính S=\(3+\frac{3}{2}+\frac{3}{2^2}+........+\frac{3}{2^9}\)
Tím tổng S=\(3+\frac{3}{2^1}+\frac{3}{2^2}\frac{3}{2^3}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(2S-S=6-\frac{3}{2^9}=\frac{3069}{512}\)
\(S=\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
2S=\(\frac{6}{2}+\frac{6}{2^2}+....+\frac{6}{2^9}\)
2S-S=<\(\frac{6}{2}+\frac{6}{2^2}+....+\frac{6}{2^9}\).>-<\(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)>
S=3+3+3+3+3+3+3+3+3
S=27
ta có :
2.S=\(\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\)
2.S-S=\(\left(\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
S=\(\frac{3}{2^{10}}-\frac{3}{2}\)
Tính tổng:
S=3+\(\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)
Tính Tổng:
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(=9+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(\Rightarrow2S-S=\left(9+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(\Rightarrow S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)
Tính tổng :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=6-\frac{3}{512}\)
\(S=\frac{3069}{512}\)
Vậy \(S=\frac{3069}{512}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+........+\frac{3}{2^9}\)
\(2S=2\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)
\(2S=6+3+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)
S=3+3/2+3/22+...+3/29
S=3/1.2+3/2.3+...+3/8.9
S=3-3/2+3/2-3/3+3/3-3/4+......+3/8-3/9
S=3-3/9=27/9-3/9=24/9=8/3
Tính tổng
S=\(3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)
\(\Rightarrow\frac{1}{2}S=\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+.....+\frac{3}{2^{10}}\)
\(\Rightarrow S-\frac{1}{2}S=\left(3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{3^9}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^{10}}\right)\)
\(\Rightarrow\frac{S}{2}=3-\frac{3}{2^{10}}\)
\(\Rightarrow S=\left(3-\frac{3}{2^{10}}\right).2\)\(=6-\frac{3}{2^9}\)
\(S=3\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=A=1-\frac{1}{2^9}\)
Do đó \(S=3\left(1-\frac{1}{2^9}\right)=3\left(1-\frac{1}{512}\right)=3-\frac{3}{512}=\frac{1533}{512}\)
S= 3+\(\frac{3}{2}\)+\(\frac{3}{2^2}\)+......+\(\frac{3}{2^9}\)
S= 3(1+\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+........\(\frac{1}{2^9}\))
\(\frac{S}{3}\)= 1+\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+......+\(\frac{1}{2^9}\) (1)
\(\frac{2S}{3}\)=2+1+\(\frac{1}{2}\)+.............+\(\frac{1}{2^8}\) (2)
trừ cả 2 vế của (1) và (2) ta được
\(\frac{S}{3}\)=2 -\(\frac{1}{2^9}\)
\(\frac{S}{3}\)=\(\frac{2^{10}-1}{2^9}\)
s=\(\frac{2^{10}-1}{3\cdot2^9}\)