tìm số tự nhiên n biết :\(\frac{n}{3}<1\frac{1}{6}\)
Tìm số tự nhiên n ,biết :\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\frac{23+n}{40+n}=\frac{3}{4}\Leftrightarrow4\left(23+n\right)=3\left(40+n\right)\)
\(\Leftrightarrow92+4n=120+3n\)
\(\Leftrightarrow92-120=-4n+3n\)
\(\Leftrightarrow-28=-n\Leftrightarrow n=28\)
duyệt nha bn
Tìm số tự nhiên n , biết :
\(\frac{4}{n}+\frac{n}{3}=\frac{5}{6}\)
Mẫu số khác 0 nên n khác 0
\(\frac{4}{n}+\frac{n}{3}=\frac{5}{6}\) nên \(\frac{n}{3}\frac{5}{6}\)=> Loại
Vậy không có số tự nhiên n thỏa mãn
tìm số tự nhiên n biết\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{2018}{6057}\)
\(\frac{1}{1.3}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\right)=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}=\frac{2018}{6057}.3\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=\frac{1}{2019}\)
\(\Rightarrow n+3=2019\)
\(\Rightarrow n=2016\)
Vậy n = 2016
1. Tìm số tự nhiên n để \(P=\frac{-n+2}{n-1}\) là số nguyên.
2. Tìm số tự nhiên n để phân số \(M=\frac{6n-3}{4n-6}\)đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
3 Tìm số tự nhiên có 3 c/s, biết rằng khi chia số đó cho các số 25; 28; 35 thì được các số dư lần lượt là 5; 8; 15.
4 Tìm số tự nhiên x,y sao cho: \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
5 Tìm số tự nhiên n để phân số \(B=\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
10. Tìm số tự nhiên n , biết ;
\(\frac{23+n}{40+n}=\frac{3}{4}\)
=> 4.(23+n)=3(40+n)
92+4n=120+3n
92-120=3n-4n
-28=-1n
=>n=28
Tìm số tự nhiên n biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
Tìm số tự nhiên n biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n.\left(n+1\right)}=\frac{2003}{2004}\)
đặt a=1/3+1/6+1/10+...........+2/n(n+1)
1/2a=1/6+1/12+...........+1/n(n+1)
1/2a=1/2.3+1/3.4+........+1/n(n+1)
1/2a=1/2-1/3+1/3-1/4+.......+1/n-1/n+1
1/2a=1/2-1/n+1
a=(1/2--1/n+1):1/2=2003/2004
1/2-1/n+1=2003/2004.1/2
1/2-1/n+1=2003/4008
1/n+1=1/2-2003/4008
1/n+1=1/4008
suy ra n+1=4008
n=4007
tìm số tự nhiên n để \(\frac{n^2+7}{n+7}\) là số tự nhiên
bài 2: tìm số tự nhiên n để \(\frac{n^2+8}{n+8}\) là số tự nhiên
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
Tìm số tự nhiên n biết rằng
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}\)=\(\frac{2010}{2011}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2010}{2011}\)
\(\Leftrightarrow n=4021\).