Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Tiến
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Nguyễn Đức Gia Minh
Xem chi tiết

Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)

Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)

\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)

mà \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)

Áp dụng các bđt trên vào bài toán ta có

 ∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)\(\frac{a+b+c}{a+b+c}=1\)

Bất đẳng thức được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Nguyễn Linh Chi
28 tháng 2 2020 lúc 16:58

Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm

Khách vãng lai đã xóa

chứng minh bđt "Lại có" ạ

Khách vãng lai đã xóa
Phan Thế Anh
Xem chi tiết
Đào Thu Hoà
18 tháng 6 2019 lúc 0:35

Do \(ab+bc+ca\le1\) nên:

\(\frac{1}{a^2+1}\le\frac{1}{a^2+ab+bc+ca}=\frac{1}{\left(a+b\right)\left(a+c\right)}.\)

Chứng minh tương tự :\(\frac{1}{b^2+1}\le\frac{1}{\left(a+b\right)\left(b+c\right)};\frac{1}{c^2+1}\le\frac{1}{\left(a+c\right)\left(b+c\right)}.\)

Suy ra \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\)

\(\Leftrightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(1)

Mặt khác áp dụng bất đẳng thức AM-GM ta có: 

\(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\ge6\sqrt[6]{\left(abc\right)^6}=6abc\)

\(\Leftrightarrow9\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+18abc\ge8\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+24abc\)\(\Leftrightarrow9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right).\)(2)

Từ (1) và (2) suy ra:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\)(3)

Thật vậy ta có; \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{ab.bc.ca}=9abc\)(BĐT AM-GM)

Lại có:\(\sqrt{3}\left(ab+bc+ca\right)\ge\sqrt{3}\sqrt{ab+bc+ca}.\left(ab+bc+ca\right)\)(Do :
\(ab+bc+ca\le1\Rightarrow1\ge\sqrt{ab+bc+ca}.\))

                                                       \(\ge3.\sqrt{3\sqrt[3]{a^2b^2c^2}}.3.\sqrt[3]{a^2b^2c^2}=9abc\)(BĐT AM-GM)

Vậy \(\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge9abc+9abc\)

\(\Rightarrow\left(a+b+c+\sqrt{3}\right)\left(ab+bc+ca\right)\ge18abc\)

\(\Rightarrow a+b+c+\sqrt{3}\ge\frac{18}{ab+bc+ca}\)(4)

Từ (3) và (4) ta có:

\(a+b+c+\sqrt{3}\ge8abc.\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)

                                                                 

Tran Le Khanh Linh
25 tháng 5 2020 lúc 20:36

Chứng minh BĐT quen thuộc \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\) Kết hợp với giả thiết ta có: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{a^2+ab+bc+ca}+\frac{1}{b^2+ab+bc+ca}+\frac{1}{c^2+ab+bc+ca}\)

\(=\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+a\right)\left(b+c\right)}+\frac{1}{\left(c+a\right)\left(c+b\right)}=\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\) Như vậy cần chứng minh

\(a+b+c+\sqrt{3}\ge8abc\cdot\frac{9}{4\left(ab+bc+ca\right)}=\frac{18\left(a+b+c\right)}{ab+bc+ca}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge18abc\)

Ta đã có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) nên cần chứng minh được

\(\sqrt{3}\left(ab+bc+ca\right)\ge9abc\Leftrightarrow ab+bc+ca\ge3\sqrt{3}abc\)

Theo BĐT AM-GM ta đi chứng minh một kết quả chặt hơn là:

\(3\sqrt[2]{a^2b^2c^2}\ge3\sqrt{3}abc\Leftrightarrow abc\le\frac{1}{3\sqrt{3}}\)

Và đây là điều luôn đúng vì \(abc=\sqrt{ab\cdot bc\cdot ca}\le\sqrt{\left(\frac{ab+bc+ca}{3}\right)^3}\le\sqrt{\frac{1}{27}}=\frac{1}{3\sqrt{3}}\)

Ta được đpcm. Dấu \("="\Leftrightarrow a=b=c=\frac{\sqrt{3}}{3}\)

Khách vãng lai đã xóa
Ngô Đức Anh
Xem chi tiết
Rinu
23 tháng 8 2019 lúc 18:58

Bài làm:

Mk cx ko chắc nx nha !

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)

\(=3-\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)\)(mk không biết cách viết nên ns nhé, tổng trong ngoặc { m, là

cái Tổng trong ngoặc dưới tổng có một dấu ngoặc nhọn, dưới dấu ngặc nhọn có M}

Áp dụng BĐT Cauchy-Schwarz:

\(M=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{4\left(a+b+c\right)^2}{\left(a+b\right)\left(a+b+1\right)\left(b+c\right)\left(b+c+1\right)\left(c+a\right)\left(c+a+1\right)}\)

\(=\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(a+b+c\right)}\ge\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(ab+bc+ca\right)}\)

\(=2\)

(Do \(a+b+c\le ab+bc+ca\))

Vậy \(M\ge2\)

\(\Rightarrow\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\le1\)(Đpcm)

Dấu ''='' xảy ra khi a=b=c=1

Darlingg🥝
4 tháng 9 2019 lúc 17:33

Chép bài à bn tại sao \(A=\frac{1}{a+b+1}\) thế 2 ở bên kia đ?

Hơn nữa bất đẳng thức bn sai bét rồi người ta bảo bất đẳng thức bên kia mà sao bạn cho tổng luôn 

3- lấy đâu ra kết quả phải là \(2^2\)chứ 

Nếu ghi sai đề bài là bn sai cả bài k chắc đ :)

Ngoài ra các tổng bên ngoặc k có 4 hay 2 gì hết sai hết r nhé 

Lê Song Phương
Xem chi tiết
Nguyễn Nam Dương
3 tháng 1 2022 lúc 14:22

TL :

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).

HT

Khách vãng lai đã xóa
Lê Song Phương
3 tháng 1 2022 lúc 14:57

Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái 

\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?

Khách vãng lai đã xóa
Lê Song Phương
3 tháng 1 2022 lúc 15:20

Anh xem sai chỗ nào ạ?

Áp dụng BĐT Cô-si, ta có 

\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(1)

và \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(vì \(a+b+c\le1\)) (2)

và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)(3)

Kết hợp (2) và (3) ta có \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(4)

Kết hợp (1) và (4) ta có \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{\frac{8\left(ab+bc+ca\right)^3}{27^2}}}=\sqrt[3]{\frac{27.27^2}{8\left(ab+bc+ca\right)^3}}\)

\(=\frac{27}{2\left(ab+bc+ca\right)}\)

Từ đó \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)

Áp dụng BĐT Bu-nhi-a-cốp-xki, ta có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)(vì \(a+b+c\le1\))

Lại có \(\frac{1}{ab+bc+ca}\ge\frac{3}{\left(a+b+c\right)^2}\ge3\)(cũng vì \(a+b+c\le1\))

Do đó ta được 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{2}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)

\(\ge9+\frac{23.3}{2}=\frac{87}{2}\)

Vậy BĐT được chứng minh.

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Hà Lê
Xem chi tiết
Rau
8 tháng 7 2017 lúc 13:07

\(-1=-\left(a^2+b^2+c^2\right)=>-1\le2\left(ab+bc+ca\right).\\ < =>\left(a+b+c\right)^2\ge0.\)
Luôn đúng .
\(a^2+b^2+c^2=1\ge ab+bc+ca\)

Nguyễn Thị Yến Nga
Xem chi tiết
 Mashiro Shiina
9 tháng 1 2020 lúc 19:45

Game này ez thôi bạn

\(bđt\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)

\(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow bđt\Leftrightarrow\sum\frac{x}{x+2y}\ge1\)

Bđt trên đúng do: \(\sum\frac{x}{x+2y}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\rightarrowđpcm\)

\("="\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa