So sánh 2 số C và D biết C=19^30+5/19^31+5 và D+=19^31+5/19^32+5
so sánh C và D biết C=1930+5/1931+5 ; D=1931+5/1932+5
giải giúp mình nhanh nhé mình đang cần gấp mình tick cho
C = 1930+5/1931+5
=>19C = 1931+95/1931+5 = 1+ [90/1931+5]
D = 1931+5/1932+5
=>19D = 1932+95/1932+5 = 1 + [90/1932+5]
ma 90/1931+5 > 90/1932+5
=>19C > 19D
=>C > D
SO SÁNH : C=19^30+5\19^31+5 D=19^31+5\19^32+5
So sánh a và B biết:
A=19^30+5/19^31+5
B=19^31+5/19^32+5
Ta có 1930<1931
\(\left(\frac{5}{19}\right)^{31}< \left(\frac{5}{19}\right)^{32}\)
5=5
công vế theo vế ta có
\(19^{30}+\left(\frac{5}{19}\right)^{31}+5< 19^{31}+\left(\frac{5}{19}\right)^{32}+5\)
Vậy A<B
so sánh:
19^30 + 5 : 19^31 + 5 và 19^31 + 5 : 19^32 + 5
\(\frac{19^{30}+5}{19^{31}+5}\)và \(\frac{19^{31}+5}{19^{32}+5}\)
Xét biểu thức \(\frac{19^{30}+5}{19^{31}+5}\)là A và biểu thức \(\frac{19^{31}+5}{19^{32}+5}\)là B
\(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}\)
\(=\)\(\frac{19^{31}.19}{19^{32}.19}\)\(=\)\(\frac{19.\left(19^{30}+1\right)}{19.\left(19^{31}+1\right)}\)
\(=\)\(\frac{19^{30}+1}{19^{31}+1}\)
Mà \(\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}\)
Nên \(A>B\)
so sánh N và M biết: M= 19^30+5/19^31+5 N= 19^31+5/19^32+5
= nhau
mk chắc chắn cần gải ra bảo mk
:3
so sánh:
19^30 + 5 : 19^31 + 5 và 19^31 + 5 : 19^32 + 5
so sánh
a,A=172013+2/172012+2 và B=172012+1/172011+1
b,203.204-1/203.204 và 204.205-1/204.205
c,C=1930+5/1931+5 và D=1931+5/1932+5
So sánh M và N biết:
M = \(\frac{19^{30}+5}{19^{31}+5}\); N = \(\frac{19^{31}+5}{19^{32}+5}\)
\(19M=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5+90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19N=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5+90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(19^{31}+5< 19^{32}+5\) nên \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\) \(\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Do đó \(M>N\)
Ta có :
\(N=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19.\left(19^{30}+5\right)}{19.\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=M\)
=> N < M
So Sánh M và N
\(M=\frac{19^{30}+5}{19^{31}+5}\)và \(N=\frac{19^{31}+5}{19^{32}+5}\)
\(M=\frac{19^{30}+5}{19^{31}+5}\)
\(19M=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5}{19^{31}+5}+\frac{90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(N=\frac{19^{31}+5}{19^{32}+5}\)
\(19N=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5}{19^{32}+5}+\frac{90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
chung tử rồi so sánh mẫu đi
#)Giải :
\(M=\frac{19^{30}+5}{19^{31}+5}\Rightarrow19M=\frac{19\left(19^{30}+5\right)}{19^{31}+5}=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5+90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(N=\frac{19^{31}+5}{19^{32}+5}\Rightarrow19N=\frac{19\left(19^{31}+5\right)}{19^{32}+5}=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5+90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\Rightarrow19M>19N\Rightarrow M>N\)
#~Will~be~Pens~#
Ta có : \(N=\frac{19^{31}+5}{19^{32}+5}< 1\)
Áp dụng công thức \(\forall a,b,m\in N;b,m\inℕ^∗\)
\(\Rightarrow\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có :
\(N=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\cdot\left(19^{30}+5\right)}{19\cdot\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=M\)
Vậy N < M